Volume 25, Issue 79 (12-2025)                   jgs 2025, 25(79): 0-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bosak A, Hejazizadeh Z, Heydari Tashekaboud A. (2025). Modeling and Prediction of PM₁₀ Concentrations in Ahvaz Using a Hybrid Statistical and Deep Learning Approach. jgs. 25(79),
URL: http://jgs.khu.ac.ir/article-1-4357-en.html
1- Department of Natural Geography, Faculty of Geographical Sciences, Khwarazmi University, Tehran, Iran., bosak.a.69@gmail.com , bosak.a.69@gmail.com
2- Department of Natural Geography, Faculty of Geographical Sciences, Khwarazmi University, Tehran, Iran., hedjazizadeh@yahoo.com
3- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China & Department of Geography & Urban Planning; Ferdowsi University of Mashhad,, Heydariakbar@gmail.com
Abstract:   (3177 Views)
Air pollution has significant impacts on human health, environmental quality, and the sustainable development of cities. This study aimed to evaluate PM10 using meteorological data from the city of Ahvaz through statistical methods and artificial neural networks. Daily meteorological data and air quality control station data for 4485 days (from 2011 to 2023) were obtained from the National Meteorological Organization and the Khuzestan Department of Environment. Initially, the data were processed and refined, and their normality was assessed using the Kolmogorov-Smirnov test. Given the non-normality of the data, Spearman's and Kendall's Tau-b methods were employed to examine their correlations. The time series and statistical information of the data were obtained using Python programming language. Furthermore, to predict future PM10 levels, the Multilayer Perceptron (MLP) neural network method was utilized. The results of these analyses indicated a significant correlation between meteorological variables and PM10. The Spearman and Kendall Tau-b correlations showed that PM10 had a positive and significant correlation with wind speed (0.094 and 0.061) and temperature (0.284 and 0.187) at a 99% confidence level. Conversely, PM10 exhibited a negative and significant correlation with visibility (-0.408 and -0.300), wind direction (-0.048 and -0.034), precipitation (-0.159 and -0.125), and relative humidity (-0.259 and -0.173) at the 99% confidence level. For future PM10 predictions, the MLP neural network was used. The model was of the Sequential type with an input layer consisting of 6 neurons, three hidden layers of Dense type with 16, 32, and 64 neurons, and an output layer with a linear activation function. The mean squared error (MSE) for the training set was 0.0034, and for the validation data, it was 0.0012. For the test set, the obtained validation accuracy was mse_mlp=0.0048 and val_loss=0.0012. The results indicate a significant direct or inverse correlation between meteorological data and PM10. Additionally, the outcomes of the MLP neural network demonstrated that the network provided satisfactory performance and acceptable predictions for PM10 data in Ahvaz.
     
Type of Study: Research | Subject: climatology

References
1. بساک، عاطفه؛ حجازی زاده، زهرا؛ حیدری تاشه کبود، اکبر (1402). واکاوی سری زمانی آلاینده جوی PM10 در ‌شهر جهانی شوشتر با استفاده از روش‌های آماری (2023-2014). دومین کنفرانس ملی و اولین کنفرانس بین‌المللی روز آینده، شهر آینده، تهران.
2. حسینی، سید اسعد.، مسگری، ابراهیم،. سالاری فنودی، محمدرضا. (1395). شبکه‌های عصبی مصنوعی در آب‌وهواشناسی. زنجان: آذرکلک.
3. زنگوئی، حسین؛ اسداله فردی، غلامرضا (1396). پیش‌بینی آلودگی pm10 هوای شهر مشهد با استفاده از شبکه‌های عصبی مصنوعی MLP و مدل زنجیره مارکف. تحقیقات کاربردی علوم جغرافیایی، 17(47)، 39-59.
4. سالنامه آماری استان خوزستان، 1398
5. صادقی، حسین؛ خاکسار آستانه، سمانه (1393). پیش‌بینی کوتاه‌مدت آلودگی ذرات معلق شهر اهواز با کمک شبکه‌های عصبی. پژوهش‌های محیط‌زیست، 5(9)، 177-186.‎
6. عالی محمودی سراب، سجاد؛ معیری، محمدهادی؛ شتایی جویباری، شعبان؛ راشکی، علیرضا (1397). برآورد میزان آلودگی هوا (PM10) با استفاده از داده‌های آب و هوایی (مطالعه موردی: شهرستان اهواز). محیط‌زیست طبیعی، منابع طبیعی ایران، 71(3)، 385-397. doi: 10.22059/JNE.2018.221268.1280
7. عساکره، حسین. (1390). میانی اقلیم‌شناسی آماری. زنجان، چاپ اول: دانشگاه زنجان.
8. قربانی سالخورد، رضوان؛ مباشری، محمدرضا؛ رحیم زادگان، مجید (1391). روشی سریع در برآورد غلظت ذرات معلق با استفاده از سنجنده مودیس: یک مطالعه موردی در تهران، مجله پژوهشی حکیم، 15(2)، 166-177.
9. کیخسروی، سعید؛ نژادکورکی، فرهاد؛ امین طوسی، محمود (1398). ارزیابی دقت شبکه‌های عصبی مصنوعی در پیش‌بینی گردوغبار کارخانه سیمان سبزوار، فصلنامه پژوهش در بهداشت محیط. 5(1)، 43-52.
10. مهرجو، فرزاد؛ باغخانی پور، محمدصابر؛ علم، امیر (2023). بررسی آلودگی هوای ناشی از صنعت فروسیلیس (مطالعه موردی: کارخانه فروآلیاژ ایران، لرستان). مخاطرات محیط طبیعی، 12(37)، 117-132.‎
11. ویژگی‌های جغرافیایی استان خوزستان https://khzmet.ir/image/climakh.pdf
12. هدایت زاده، فریبا؛ ایلدرمی، علیرضا؛ حسن‌زاده، نسرین (1398). تحلیل کیفیت هوا براساس ذرات معلق PM2. 5 و PM10 با دو روش USEPA-AQI و IND-AQI و فاکتور EF در شهر اهواز در سال‌های 1395 و 1396. مجله مهندسی بهداشت محیط، 7، 57-75.
13. Adil, M., Ullah, R., Noor, S., & Gohar, N. (2020). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural computing and applications, 34(11), 8355-8363. [DOI:10.1007/s00521-020-05305-8]
14. Alimahmoodi Sarab, S., Shataee Jouybari, S., & Rashki, A. (2018). The Estimate of Dust Concentration Using of Weather Variable (A Case study: Ahvaz City). Journal of Natural Environment, 71(3), 385-397. doi: 10.22059/jne.2018.221268.1280. (in Persian)
15. Asaei-Moamam, Z. S., Safi-Esfahani, F., Mirjalili, S., Mohammadpour, R., & Nadimi-Shahraki, M. H. (2023). Air quality particulate-pollution prediction applying GAN network and the Neural Turing Machine. Applied Soft Computing, 147, 110723. [DOI:10.1016/j.asoc.2023.110723]
16. Baawain, M. S., & Al-Serihi, A. S. (2014). Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol and air quality research, 14(1), 124-134. [DOI:10.4209/aaqr.2013.06.0191]
17. Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., ... & Di Carlo, P. (2017). Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmospheric Pollution Research, 8(4), 652-659. [DOI:10.1016/j.apr.2016.12.014]
18. Bosak, Atefeh., hejazizadeh, Zahra., Heydari Tashekaboud, Akbar. (2024). Analyzing the time series of PM10 air pollution in Shushtar International City using statistical methods (2014-2023). The second national and first international conference of futures day, futures city. Tehran. (in Persian)
19. Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling & Software, 119, 285-304. [DOI:10.1016/j.envsoft.2019.06.014]
20. Carnevale, C., Pisoni, E., & Volta, M. (2010). A non-linear analysis to detect the origin of PM10 concentrations in Northern Italy. Science of the Total Environment, 409(1), 182-191. [DOI:10.1016/j.scitotenv.2010.09.038] [PMID]
21. Dong, J., Goodman, N., & Rajagopalan, P. (2023). A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. International Journal of Environmental Research and Public Health, 20(15), 6441. [DOI:10.3390/ijerph20156441] [PMID] []
22. Eslamloueyan, R., & Khademi, M. H. (2009). Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences, 48(6), 1094-1101. [DOI:10.1016/j.ijthermalsci.2008.08.013]
23. Garsa, K., Khan, A. A., Jindal, P., Middey, A., Luqman, N., Mohanty, H., & Tiwari, S. (2023). Assessment of meteorological parameters on air pollution variability over Delhi. Environmental Monitoring and Assessment, 195(11), 1315. [DOI:10.1007/s10661-023-11922-2] [PMID]
24. Ge, R., Kuditipudi, R., Li, Z., & Wang, X. (2018). Learning two-layer neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793.
25. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric environment, 40(7), 1216-1229. [DOI:10.1016/j.atmosenv.2005.10.036]
26. Hedayatzadeh F, Ildoromi A, Hassanzadeh N. Analysis of air quality based on particulate matter (PM2.5 and PM10) by using two methods USEPA-AQI and IND-AQI and EF Factor in Ahwaz city in 2016 and 2017. jehe 2020; [DOI:10.29252/jehe.0.57. (in Persian)]
27. Heidar Maleki, Armin Sorooshian, Khan Alam, Ahmad Fathi, Tammy Weckwerth, Hadi Moazed, Arsalan Jamshidi, Ali Akbar Babaei, Vafa Hamid, Fatemeh Soltani & Gholamreza Goudarzi (2022). The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms. Journal of Environmental Health Science and Engineering, 20(1), 495-507. [DOI:10.1007/s40201-022-00795-1] [PMID] []
28. Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W., Le, T. H., Chau, M. Q., & Nguyen, X. P. (2021). A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments, 47, 101416. [DOI:10.1016/j.seta.2021.101416]
29. http://aliper.persiangig.com/page8.html
30. https://almaprime.com/
31. https://blog.faradars.org
32. https://www.who.int/health-topics/air-pollution#tab=tab_1
33. Keykhosravi, S. S., Nejadkoorki, F., & Amintoosi, M. (2019). Estimation of Artificial Neural Networks (MLP and RBF) Accuracy in Anticipation of the Dust of the Sabzevar Cement Factory. Journal of Research in Environmental Health, 5(1), 43-52. doi: 10.22038/jreh.2019.38083.1277. (in Persian)
34. Kumar, L. K. L., & Kumar, G. K. D. G. (2024). A Prediction Model for Air Pollution using Artificial Neural Networks. [DOI:10.21203/rs.3.rs-3866173/v1]
35. Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529.https://www.sciencedirect.com/science/article/abs/pii/S0306261923018937#preview-section-introduction [DOI:10.1016/j.apenergy.2023.122529]
36. López-Gonzales, J. L., Gómez Lamus, A. M., Torres, R., Canas Rodrigues, P., & Salas, R. (2023). Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats, 6(4), 1241-1259. [DOI:10.3390/stats6040077]
37. Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., & Rahmati, M. (2019). Air pollution prediction by using an artificial neural network model. Clean technologies and environmental policy, 21, 1341-1352. [DOI:10.1007/s10098-019-01709-w] [PMID] []
38. Mehrjo, F., Baghkhanipour, M., & Alam, A. (2023). Investigating air pollution caused by the ferrosilicon industry (Case study: Iran Ferroalloy Factory, Lorestan). Journal of Natural Environmental Hazards, 12(37), 117-132. doi: 10.22111/jneh.2023.43635.1923. (in Persian)
39. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anesthesia, 22(1), p. 67. https://doi.org/10.4103/aca.ACA_157_18 [DOI:10.4103%2Faca.ACA_157_18] [PMID] []
40. Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32, 495-518. [DOI:10.1007/s00521-019-04109-9]
41. Mosley, S. (2014). Environmental history of air pollution and protection. In The basic environmental history (pp. 143-169). Cham: Springer International Publishing. [DOI:10.1007/978-3-319-09180-8_5]
42. Qorbani Salkhord R, Mobasheri MR, Rahimzadehgan M. A Fast Method for Assessment of PM10 Concentration Using MODIS Images, a Case Study in Tehran. Hakim Research Journal 2012;15(2):166-177. (in Persian)
43. Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
44. Rodrıguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35(14), 2433-2447. [DOI:10.1016/S1352-2310(00)00496-9]
45. sadeghi, H., & khaksar, S. (2015). Neural Network Model for Short Term Prediction of PM10 Pollution in Ahvaz City. Environmental Researches, 5(9), 177-186. (in Persian)
46. Shams a , Seyedeh Reyhaneh. Kalantary b , Saba. Jahani c , Ali. Shams d , Seyed Mohammad Parsa. Kalantari e , Behrang. Singh a , Deveshwar. Moeinnadini f , Mazaher. Choi,Yunsoo. (2023). Assessing the effectiveness of artificial neural networks (ANN) and multiple linear regressions (MLR) in forcasting AQI and PM10 and evaluating health impacts through AirQ+ (case study: Tehran). Environmental Pollution, 338, 122623. [DOI:10.1016/j.envpol.2023.122623] [PMID]
47. Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., ... & Dixit, S. (2022). Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability, 14(16), 9951. [DOI:10.3390/su14169951]
48. Taheri, S., & Razban, A. (2021). Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Building and Environment, 205, 108164. [DOI:10.1016/j.buildenv.2021.108164]
49. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier. [DOI:10.1016/B978-0-12-819001-2.00021-8]
50. Wang, Z., Tham, M. T., & JULIAN MORRIS, A. (1992). Multilayer feedforward neural networks: a canonical form approximation of nonlinearity. International Journal of Control, 56(3), 655-672. [DOI:10.1080/00207179208934333]
51. Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
52. Yadav, V., Yadav, A. K., Singh, V., & Singh, T. (2024). Artificial neural network an innovative approach in air pollutant prediction for environmental applications: A review. Results in Engineering, 102305. [DOI:10.1016/j.rineng.2024.102305]
53. Zangooei, Hossein., asadollahfardi. (2017). PM10 Air pollution in mashhad city using artificial neural network and makov chain model. jgs 2017; 17 (47) :39-59. (in Persian)
54. Zhang, H., Srinivasan, R., & Yang, X. (2021). Simulation and analysis of indoor air quality in florida using time series regression (tsr) and artificial neural networks (ann) models. Symmetry, 13(6), 952. [DOI:10.3390/sym13060952]
55. Adil, M., Ullah, R., Noor, S., & Gohar, N. (2020). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural computing and applications, 34(11), 8355-8363. [DOI:10.1007/s00521-020-05305-8]
56. Alimahmoodi Sarab, S., Shataee Jouybari, S., & Rashki, A. (2018). The Estimate of Dust Concentration Using of Weather Variable (A Case study: Ahvaz City). Journal of Natural Environment, 71(3), 385-397. doi: 10.22059/jne.2018.221268.1280. (in Persian)
57. Asaei-Moamam, Z. S., Safi-Esfahani, F., Mirjalili, S., Mohammadpour, R., & Nadimi-Shahraki, M. H. (2023). Air quality particulate-pollution prediction applying GAN network and the Neural Turing Machine. Applied Soft Computing, 147, 110723. [DOI:10.1016/j.asoc.2023.110723]
58. Baawain, M. S., & Al-Serihi, A. S. (2014). Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol and air quality research, 14(1), 124-134. [DOI:10.4209/aaqr.2013.06.0191]
59. Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., ... & Di Carlo, P. (2017). Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmospheric Pollution Research, 8(4), 652-659. [DOI:10.1016/j.apr.2016.12.014]
60. Bosak, Atefeh., hejazizadeh, Zahra., Heydari Tashekaboud, Akbar. (2024). Analyzing the time series of PM10 air pollution in Shushtar International City using statistical methods (2014-2023). The second national and first international conference of futures day, futures city. Tehran. (in Persian)
61. Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling & Software, 119, 285-304. [DOI:10.1016/j.envsoft.2019.06.014]
62. Carnevale, C., Pisoni, E., & Volta, M. (2010). A non-linear analysis to detect the origin of PM10 concentrations in Northern Italy. Science of the Total Environment, 409(1), 182-191. [DOI:10.1016/j.scitotenv.2010.09.038] [PMID]
63. Dong, J., Goodman, N., & Rajagopalan, P. (2023). A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. International Journal of Environmental Research and Public Health, 20(15), 6441. [DOI:10.3390/ijerph20156441] [PMID] []
64. Eslamloueyan, R., & Khademi, M. H. (2009). Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences, 48(6), 1094-1101. [DOI:10.1016/j.ijthermalsci.2008.08.013]
65. Garsa, K., Khan, A. A., Jindal, P., Middey, A., Luqman, N., Mohanty, H., & Tiwari, S. (2023). Assessment of meteorological parameters on air pollution variability over Delhi. Environmental Monitoring and Assessment, 195(11), 1315. [DOI:10.1007/s10661-023-11922-2] [PMID]
66. Ge, R., Kuditipudi, R., Li, Z., & Wang, X. (2018). Learning two-layer neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793.
67. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric environment, 40(7), 1216-1229. [DOI:10.1016/j.atmosenv.2005.10.036]
68. Hedayatzadeh F, Ildoromi A, Hassanzadeh N. Analysis of air quality based on particulate matter (PM2.5 and PM10) by using two methods USEPA-AQI and IND-AQI and EF Factor in Ahwaz city in 2016 and 2017. jehe 2020; [DOI:10.29252/jehe.0.57. (in Persian)]
69. Heidar Maleki, Armin Sorooshian, Khan Alam, Ahmad Fathi, Tammy Weckwerth, Hadi Moazed, Arsalan Jamshidi, Ali Akbar Babaei, Vafa Hamid, Fatemeh Soltani & Gholamreza Goudarzi (2022). The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms. Journal of Environmental Health Science and Engineering, 20(1), 495-507. [DOI:10.1007/s40201-022-00795-1] [PMID] []
70. Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W., Le, T. H., Chau, M. Q., & Nguyen, X. P. (2021). A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments, 47, 101416. [DOI:10.1016/j.seta.2021.101416]
71. http://aliper.persiangig.com/page8.html
72. https://almaprime.com/
73. https://blog.faradars.org
74. https://www.who.int/health-topics/air-pollution#tab=tab_1
75. Keykhosravi, S. S., Nejadkoorki, F., & Amintoosi, M. (2019). Estimation of Artificial Neural Networks (MLP and RBF) Accuracy in Anticipation of the Dust of the Sabzevar Cement Factory. Journal of Research in Environmental Health, 5(1), 43-52. doi: 10.22038/jreh.2019.38083.1277. (in Persian)
76. Kumar, L. K. L., & Kumar, G. K. D. G. (2024). A Prediction Model for Air Pollution using Artificial Neural Networks. [DOI:10.21203/rs.3.rs-3866173/v1]
77. Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529.https://www.sciencedirect.com/science/article/abs/pii/S0306261923018937#preview-section-introduction [DOI:10.1016/j.apenergy.2023.122529]
78. López-Gonzales, J. L., Gómez Lamus, A. M., Torres, R., Canas Rodrigues, P., & Salas, R. (2023). Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats, 6(4), 1241-1259. [DOI:10.3390/stats6040077]
79. Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., & Rahmati, M. (2019). Air pollution prediction by using an artificial neural network model. Clean technologies and environmental policy, 21, 1341-1352. [DOI:10.1007/s10098-019-01709-w] [PMID] []
80. Mehrjo, F., Baghkhanipour, M., & Alam, A. (2023). Investigating air pollution caused by the ferrosilicon industry (Case study: Iran Ferroalloy Factory, Lorestan). Journal of Natural Environmental Hazards, 12(37), 117-132. doi: 10.22111/jneh.2023.43635.1923. (in Persian)
81. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anesthesia, 22(1), p. 67. https://doi.org/10.4103/aca.ACA_157_18 [DOI:10.4103%2Faca.ACA_157_18] [PMID] []
82. Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32, 495-518. [DOI:10.1007/s00521-019-04109-9]
83. Mosley, S. (2014). Environmental history of air pollution and protection. In The basic environmental history (pp. 143-169). Cham: Springer International Publishing. [DOI:10.1007/978-3-319-09180-8_5]
84. Qorbani Salkhord R, Mobasheri MR, Rahimzadehgan M. A Fast Method for Assessment of PM10 Concentration Using MODIS Images, a Case Study in Tehran. Hakim Research Journal 2012;15(2):166-177. (in Persian)
85. Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
86. Rodrıguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35(14), 2433-2447. [DOI:10.1016/S1352-2310(00)00496-9]
87. sadeghi, H., & khaksar, S. (2015). Neural Network Model for Short Term Prediction of PM10 Pollution in Ahvaz City. Environmental Researches, 5(9), 177-186. (in Persian)
88. Shams a , Seyedeh Reyhaneh. Kalantary b , Saba. Jahani c , Ali. Shams d , Seyed Mohammad Parsa. Kalantari e , Behrang. Singh a , Deveshwar. Moeinnadini f , Mazaher. Choi,Yunsoo. (2023). Assessing the effectiveness of artificial neural networks (ANN) and multiple linear regressions (MLR) in forcasting AQI and PM10 and evaluating health impacts through AirQ+ (case study: Tehran). Environmental Pollution, 338, 122623. [DOI:10.1016/j.envpol.2023.122623] [PMID]
89. Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., ... & Dixit, S. (2022). Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability, 14(16), 9951. [DOI:10.3390/su14169951]
90. Taheri, S., & Razban, A. (2021). Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Building and Environment, 205, 108164. [DOI:10.1016/j.buildenv.2021.108164]
91. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier. [DOI:10.1016/B978-0-12-819001-2.00021-8]
92. Wang, Z., Tham, M. T., & JULIAN MORRIS, A. (1992). Multilayer feedforward neural networks: a canonical form approximation of nonlinearity. International Journal of Control, 56(3), 655-672. [DOI:10.1080/00207179208934333]
93. Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
94. Yadav, V., Yadav, A. K., Singh, V., & Singh, T. (2024). Artificial neural network an innovative approach in air pollutant prediction for environmental applications: A review. Results in Engineering, 102305. [DOI:10.1016/j.rineng.2024.102305]
95. Zangooei, Hossein., asadollahfardi. (2017). PM10 Air pollution in mashhad city using artificial neural network and makov chain model. jgs 2017; 17 (47) :39-59. (in Persian)
96. Zhang, H., Srinivasan, R., & Yang, X. (2021). Simulation and analysis of indoor air quality in florida using time series regression (tsr) and artificial neural networks (ann) models. Symmetry, 13(6), 952. [DOI:10.3390/sym13060952]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)