دوره ۲۵، شماره ۷۹ - ( ۱۰-۱۴۰۴ )                   جلد ۲۵ شماره ۷۹ صفحات ۰دوره۰فصل__Se | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bosak A, Hejazizadeh Z, Heydari Tashekaboud A. (2025). Modeling and Prediction of PM₁₀ Concentrations in Ahvaz Using a Hybrid Statistical and Deep Learning Approach. jgs. 25(79),
URL: http://jgs.khu.ac.ir/article-1-4357-fa.html
بساک عاطفه، حجازی زاده زهرا، حیدری تاشه کبود اکبر. مدل‌سازی و پیش‌بینی غلظت PM₁₀ در شهر اهواز با بهره‌گیری از رویکرد تلفیقی تحلیل آماری و یادگیری عمیق تحقیقات کاربردی علوم جغرافیایی ۱۴۰۴; ۲۵ (۷۹)

URL: http://jgs.khu.ac.ir/article-۱-۴۳۵۷-fa.html


۱- گروه جغرافیا طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران، bosak.a,۶۹@gmail.com ، bosak.a.69@gmail.com
۲- گروه جغرافیا طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران، hedjazizadeh@yahoo.com
۳- گروه هوش مصنوعی و شهرهای هوشمند دانشگاه ژائو ژنگ، چین و گروه جغرافیا و برنامه‌ریزی شهری، دانشگاه فردوسی مشهد، ایران .، Heydariakbar@gmail.com
چکیده:   (۳۱۲۵ مشاهده)
هدف این مطالعه ارزیابی و پیش‌بینی PM10 شهر اهواز با روش‌های آماری و شبکه عصبی مصنوعی بود. داده‌های روزانه‌ی هواشناسی و داده‌های PM10 (1390 تا 1402) از سازمان هواشناسی و اداره کل محیط‌زیست خوزستان دریافت شد. ابتدا داده‌ها پردازش و نرمال بودن آن‌ها با روش کلموگروف اسمیرنوف بررسی شد. با توجه به غیرنرمال بودن داده‌ها، از روش‌های اسپیرمن و تاوی بی کندال برای بررسی همبستگی‌شان با نرم‌افزار spss استفاده شد. سایر بخش‌ها با زبان برنامه‌نویسی پایتون و در فضای اسپایدر انجام شد؛ سری زمانی و اطلاعات آماری داده‌ها به دست آمد. جهت پیش‌بینی میزان PM10 برای گام‌های زمانی آینده از روش شبکه عصبی (MLP) استفاده شد. بیانگر وجود ارتباط معنادار بین متغیرهای هواشناسی و PM10 بود. به ترتیب، نتایج همبستگی‌های اسپیرمن و تاوی بی کندال نشان داد بین PM10 با سرعت باد (به میزان 0.094 و 0.061) و دما (0.284 و 0.187) دارای همبستگی مثبت و معنادار در سطح اطمینان 99% می‌باشد. همچنین، این پارامتر با دیدافقی (0.408- و 0.300 -)، جهت باد (0.048 و 0.034 -)، بارش (0.159 و 0.125-) و رطوبت نسبی (0.259 و 0.173-) دارای همبستگی معکوس و معناداری در سطح اطمینان 0.99% بوده است. برای پیش‌بینی میزان PM10 آینده، از شبکه عصبی (MLP) استفاده شد. مدل از نوع Sequential با یک لایه‌ی ورودی با 6 نورون، سه لایه‌ی مخفی از نوع Dense با 16، 32 و 64 نورون و یک لایه خروجی بود. میانگین مربعات خطای MSE برای بخش آموزش برابر با 0.0034 و برای داده‌های اعتبارسنجی val_loss: 0.0012 بود. برای بخش آزمایش، اعتبار سنجی برابر mse_mlp=0.0048 و val_loss: 0.0012 بود. نتایج می‌دهد که بین داده‌های هواشناسی و PM10 همبستگی معناداری از نوع مستقیم یا معکوسی وجود دارد. نتایج (MLP) نشان داد که شبکه توانسته عملکرد و خروجی مطلوبی را ارائه دهد و پیش‌بینی قابل‌قبولی برای داده‌های PM10 شهر اهواز داشته باشد.
 
     
نوع مطالعه: پژوهشي | موضوع مقاله: اب و هواشناسی

فهرست منابع
۱. بساک، عاطفه؛ حجازی زاده، زهرا؛ حیدری تاشه کبود، اکبر (۱۴۰۲). واکاوی سری زمانی آلاینده جوی PM۱۰ در ‌شهر جهانی شوشتر با استفاده از روش‌های آماری (۲۰۲۳-۲۰۱۴). دومین کنفرانس ملی و اولین کنفرانس بین‌المللی روز آینده، شهر آینده، تهران.
۲. حسینی، سید اسعد.، مسگری، ابراهیم،. سالاری فنودی، محمدرضا. (۱۳۹۵). شبکه‌های عصبی مصنوعی در آب‌وهواشناسی. زنجان: آذرکلک.
۳. زنگوئی، حسین؛ اسداله فردی، غلامرضا (۱۳۹۶). پیش‌بینی آلودگی pm۱۰ هوای شهر مشهد با استفاده از شبکه‌های عصبی مصنوعی MLP و مدل زنجیره مارکف. تحقیقات کاربردی علوم جغرافیایی، ۱۷(۴۷)، ۳۹-۵۹.
۴. سالنامه آماری استان خوزستان، ۱۳۹۸
۵. صادقی، حسین؛ خاکسار آستانه، سمانه (۱۳۹۳). پیش‌بینی کوتاه‌مدت آلودگی ذرات معلق شهر اهواز با کمک شبکه‌های عصبی. پژوهش‌های محیط‌زیست، ۵(۹)، ۱۷۷-۱۸۶.‎
۶. عالی محمودی سراب، سجاد؛ معیری، محمدهادی؛ شتایی جویباری، شعبان؛ راشکی، علیرضا (۱۳۹۷). برآورد میزان آلودگی هوا (PM۱۰) با استفاده از داده‌های آب و هوایی (مطالعه موردی: شهرستان اهواز). محیط‌زیست طبیعی، منابع طبیعی ایران، ۷۱(۳)، ۳۸۵-۳۹۷. doi: ۱۰,۲۲۰۵۹/JNE.۲۰۱۸.۲۲۱۲۶۸.۱۲۸۰
۷. عساکره، حسین. (۱۳۹۰). میانی اقلیم‌شناسی آماری. زنجان، چاپ اول: دانشگاه زنجان.
۸. قربانی سالخورد، رضوان؛ مباشری، محمدرضا؛ رحیم زادگان، مجید (۱۳۹۱). روشی سریع در برآورد غلظت ذرات معلق با استفاده از سنجنده مودیس: یک مطالعه موردی در تهران، مجله پژوهشی حکیم، ۱۵(۲)، ۱۶۶-۱۷۷.
۹. کیخسروی، سعید؛ نژادکورکی، فرهاد؛ امین طوسی، محمود (۱۳۹۸). ارزیابی دقت شبکه‌های عصبی مصنوعی در پیش‌بینی گردوغبار کارخانه سیمان سبزوار، فصلنامه پژوهش در بهداشت محیط. ۵(۱)، ۴۳-۵۲.
۱۰. مهرجو، فرزاد؛ باغخانی پور، محمدصابر؛ علم، امیر (۲۰۲۳). بررسی آلودگی هوای ناشی از صنعت فروسیلیس (مطالعه موردی: کارخانه فروآلیاژ ایران، لرستان). مخاطرات محیط طبیعی، ۱۲(۳۷)، ۱۱۷-۱۳۲.‎
۱۱. ویژگی‌های جغرافیایی استان خوزستان https://khzmet.ir/image/climakh.pdf
۱۲. هدایت زاده، فریبا؛ ایلدرمی، علیرضا؛ حسن‌زاده، نسرین (۱۳۹۸). تحلیل کیفیت هوا براساس ذرات معلق PM۲. ۵ و PM۱۰ با دو روش USEPA-AQI و IND-AQI و فاکتور EF در شهر اهواز در سال‌های ۱۳۹۵ و ۱۳۹۶. مجله مهندسی بهداشت محیط، ۷، ۵۷-۷۵.
13. Adil, M., Ullah, R., Noor, S., & Gohar, N. (2020). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural computing and applications, 34(11), 8355-8363. [DOI:10.1007/s00521-020-05305-8]
14. Alimahmoodi Sarab, S., Shataee Jouybari, S., & Rashki, A. (2018). The Estimate of Dust Concentration Using of Weather Variable (A Case study: Ahvaz City). Journal of Natural Environment, 71(3), 385-397. doi: 10.22059/jne.2018.221268.1280. (in Persian)
15. Asaei-Moamam, Z. S., Safi-Esfahani, F., Mirjalili, S., Mohammadpour, R., & Nadimi-Shahraki, M. H. (2023). Air quality particulate-pollution prediction applying GAN network and the Neural Turing Machine. Applied Soft Computing, 147, 110723. [DOI:10.1016/j.asoc.2023.110723]
16. Baawain, M. S., & Al-Serihi, A. S. (2014). Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol and air quality research, 14(1), 124-134. [DOI:10.4209/aaqr.2013.06.0191]
17. Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., ... & Di Carlo, P. (2017). Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmospheric Pollution Research, 8(4), 652-659. [DOI:10.1016/j.apr.2016.12.014]
18. Bosak, Atefeh., hejazizadeh, Zahra., Heydari Tashekaboud, Akbar. (2024). Analyzing the time series of PM10 air pollution in Shushtar International City using statistical methods (2014-2023). The second national and first international conference of futures day, futures city. Tehran. (in Persian)
19. Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling & Software, 119, 285-304. [DOI:10.1016/j.envsoft.2019.06.014]
20. Carnevale, C., Pisoni, E., & Volta, M. (2010). A non-linear analysis to detect the origin of PM10 concentrations in Northern Italy. Science of the Total Environment, 409(1), 182-191. [DOI:10.1016/j.scitotenv.2010.09.038] [PMID]
21. Dong, J., Goodman, N., & Rajagopalan, P. (2023). A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. International Journal of Environmental Research and Public Health, 20(15), 6441. [DOI:10.3390/ijerph20156441] [PMID] []
22. Eslamloueyan, R., & Khademi, M. H. (2009). Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences, 48(6), 1094-1101. [DOI:10.1016/j.ijthermalsci.2008.08.013]
23. Garsa, K., Khan, A. A., Jindal, P., Middey, A., Luqman, N., Mohanty, H., & Tiwari, S. (2023). Assessment of meteorological parameters on air pollution variability over Delhi. Environmental Monitoring and Assessment, 195(11), 1315. [DOI:10.1007/s10661-023-11922-2] [PMID]
24. Ge, R., Kuditipudi, R., Li, Z., & Wang, X. (2018). Learning two-layer neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793.
25. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric environment, 40(7), 1216-1229. [DOI:10.1016/j.atmosenv.2005.10.036]
26. Hedayatzadeh F, Ildoromi A, Hassanzadeh N. Analysis of air quality based on particulate matter (PM2.5 and PM10) by using two methods USEPA-AQI and IND-AQI and EF Factor in Ahwaz city in 2016 and 2017. jehe 2020; [DOI:10.29252/jehe.0.57. (in Persian)]
27. Heidar Maleki, Armin Sorooshian, Khan Alam, Ahmad Fathi, Tammy Weckwerth, Hadi Moazed, Arsalan Jamshidi, Ali Akbar Babaei, Vafa Hamid, Fatemeh Soltani & Gholamreza Goudarzi (2022). The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms. Journal of Environmental Health Science and Engineering, 20(1), 495-507. [DOI:10.1007/s40201-022-00795-1] [PMID] []
28. Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W., Le, T. H., Chau, M. Q., & Nguyen, X. P. (2021). A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments, 47, 101416. [DOI:10.1016/j.seta.2021.101416]
29. http://aliper.persiangig.com/page8.html
30. https://almaprime.com/
31. https://blog.faradars.org
32. https://www.who.int/health-topics/air-pollution#tab=tab_1
33. Keykhosravi, S. S., Nejadkoorki, F., & Amintoosi, M. (2019). Estimation of Artificial Neural Networks (MLP and RBF) Accuracy in Anticipation of the Dust of the Sabzevar Cement Factory. Journal of Research in Environmental Health, 5(1), 43-52. doi: 10.22038/jreh.2019.38083.1277. (in Persian)
34. Kumar, L. K. L., & Kumar, G. K. D. G. (2024). A Prediction Model for Air Pollution using Artificial Neural Networks. [DOI:10.21203/rs.3.rs-3866173/v1]
35. Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529.https://www.sciencedirect.com/science/article/abs/pii/S0306261923018937#preview-section-introduction [DOI:10.1016/j.apenergy.2023.122529]
36. López-Gonzales, J. L., Gómez Lamus, A. M., Torres, R., Canas Rodrigues, P., & Salas, R. (2023). Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats, 6(4), 1241-1259. [DOI:10.3390/stats6040077]
37. Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., & Rahmati, M. (2019). Air pollution prediction by using an artificial neural network model. Clean technologies and environmental policy, 21, 1341-1352. [DOI:10.1007/s10098-019-01709-w] [PMID] []
38. Mehrjo, F., Baghkhanipour, M., & Alam, A. (2023). Investigating air pollution caused by the ferrosilicon industry (Case study: Iran Ferroalloy Factory, Lorestan). Journal of Natural Environmental Hazards, 12(37), 117-132. doi: 10.22111/jneh.2023.43635.1923. (in Persian)
39. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anesthesia, 22(1), p. 67. https://doi.org/10.4103/aca.ACA_157_18 [DOI:10.4103%2Faca.ACA_157_18] [PMID] []
40. Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32, 495-518. [DOI:10.1007/s00521-019-04109-9]
41. Mosley, S. (2014). Environmental history of air pollution and protection. In The basic environmental history (pp. 143-169). Cham: Springer International Publishing. [DOI:10.1007/978-3-319-09180-8_5]
42. Qorbani Salkhord R, Mobasheri MR, Rahimzadehgan M. A Fast Method for Assessment of PM10 Concentration Using MODIS Images, a Case Study in Tehran. Hakim Research Journal 2012;15(2):166-177. (in Persian)
43. Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
44. Rodrıguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35(14), 2433-2447. [DOI:10.1016/S1352-2310(00)00496-9]
45. sadeghi, H., & khaksar, S. (2015). Neural Network Model for Short Term Prediction of PM10 Pollution in Ahvaz City. Environmental Researches, 5(9), 177-186. (in Persian)
46. Shams a , Seyedeh Reyhaneh. Kalantary b , Saba. Jahani c , Ali. Shams d , Seyed Mohammad Parsa. Kalantari e , Behrang. Singh a , Deveshwar. Moeinnadini f , Mazaher. Choi,Yunsoo. (2023). Assessing the effectiveness of artificial neural networks (ANN) and multiple linear regressions (MLR) in forcasting AQI and PM10 and evaluating health impacts through AirQ+ (case study: Tehran). Environmental Pollution, 338, 122623. [DOI:10.1016/j.envpol.2023.122623] [PMID]
47. Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., ... & Dixit, S. (2022). Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability, 14(16), 9951. [DOI:10.3390/su14169951]
48. Taheri, S., & Razban, A. (2021). Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Building and Environment, 205, 108164. [DOI:10.1016/j.buildenv.2021.108164]
49. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier. [DOI:10.1016/B978-0-12-819001-2.00021-8]
50. Wang, Z., Tham, M. T., & JULIAN MORRIS, A. (1992). Multilayer feedforward neural networks: a canonical form approximation of nonlinearity. International Journal of Control, 56(3), 655-672. [DOI:10.1080/00207179208934333]
51. Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
52. Yadav, V., Yadav, A. K., Singh, V., & Singh, T. (2024). Artificial neural network an innovative approach in air pollutant prediction for environmental applications: A review. Results in Engineering, 102305. [DOI:10.1016/j.rineng.2024.102305]
53. Zangooei, Hossein., asadollahfardi. (2017). PM10 Air pollution in mashhad city using artificial neural network and makov chain model. jgs 2017; 17 (47) :39-59. (in Persian)
54. Zhang, H., Srinivasan, R., & Yang, X. (2021). Simulation and analysis of indoor air quality in florida using time series regression (tsr) and artificial neural networks (ann) models. Symmetry, 13(6), 952. [DOI:10.3390/sym13060952]
55. Adil, M., Ullah, R., Noor, S., & Gohar, N. (2020). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural computing and applications, 34(11), 8355-8363. [DOI:10.1007/s00521-020-05305-8]
56. Alimahmoodi Sarab, S., Shataee Jouybari, S., & Rashki, A. (2018). The Estimate of Dust Concentration Using of Weather Variable (A Case study: Ahvaz City). Journal of Natural Environment, 71(3), 385-397. doi: 10.22059/jne.2018.221268.1280. (in Persian)
57. Asaei-Moamam, Z. S., Safi-Esfahani, F., Mirjalili, S., Mohammadpour, R., & Nadimi-Shahraki, M. H. (2023). Air quality particulate-pollution prediction applying GAN network and the Neural Turing Machine. Applied Soft Computing, 147, 110723. [DOI:10.1016/j.asoc.2023.110723]
58. Baawain, M. S., & Al-Serihi, A. S. (2014). Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol and air quality research, 14(1), 124-134. [DOI:10.4209/aaqr.2013.06.0191]
59. Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., ... & Di Carlo, P. (2017). Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmospheric Pollution Research, 8(4), 652-659. [DOI:10.1016/j.apr.2016.12.014]
60. Bosak, Atefeh., hejazizadeh, Zahra., Heydari Tashekaboud, Akbar. (2024). Analyzing the time series of PM10 air pollution in Shushtar International City using statistical methods (2014-2023). The second national and first international conference of futures day, futures city. Tehran. (in Persian)
61. Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling & Software, 119, 285-304. [DOI:10.1016/j.envsoft.2019.06.014]
62. Carnevale, C., Pisoni, E., & Volta, M. (2010). A non-linear analysis to detect the origin of PM10 concentrations in Northern Italy. Science of the Total Environment, 409(1), 182-191. [DOI:10.1016/j.scitotenv.2010.09.038] [PMID]
63. Dong, J., Goodman, N., & Rajagopalan, P. (2023). A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. International Journal of Environmental Research and Public Health, 20(15), 6441. [DOI:10.3390/ijerph20156441] [PMID] []
64. Eslamloueyan, R., & Khademi, M. H. (2009). Estimation of thermal conductivity of pure gases by using artificial neural networks. International Journal of Thermal Sciences, 48(6), 1094-1101. [DOI:10.1016/j.ijthermalsci.2008.08.013]
65. Garsa, K., Khan, A. A., Jindal, P., Middey, A., Luqman, N., Mohanty, H., & Tiwari, S. (2023). Assessment of meteorological parameters on air pollution variability over Delhi. Environmental Monitoring and Assessment, 195(11), 1315. [DOI:10.1007/s10661-023-11922-2] [PMID]
66. Ge, R., Kuditipudi, R., Li, Z., & Wang, X. (2018). Learning two-layer neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793.
67. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric environment, 40(7), 1216-1229. [DOI:10.1016/j.atmosenv.2005.10.036]
68. Hedayatzadeh F, Ildoromi A, Hassanzadeh N. Analysis of air quality based on particulate matter (PM2.5 and PM10) by using two methods USEPA-AQI and IND-AQI and EF Factor in Ahwaz city in 2016 and 2017. jehe 2020; [DOI:10.29252/jehe.0.57. (in Persian)]
69. Heidar Maleki, Armin Sorooshian, Khan Alam, Ahmad Fathi, Tammy Weckwerth, Hadi Moazed, Arsalan Jamshidi, Ali Akbar Babaei, Vafa Hamid, Fatemeh Soltani & Gholamreza Goudarzi (2022). The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms. Journal of Environmental Health Science and Engineering, 20(1), 495-507. [DOI:10.1007/s40201-022-00795-1] [PMID] []
70. Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W., Le, T. H., Chau, M. Q., & Nguyen, X. P. (2021). A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments, 47, 101416. [DOI:10.1016/j.seta.2021.101416]
71. http://aliper.persiangig.com/page8.html
72. https://almaprime.com/
73. https://blog.faradars.org
74. https://www.who.int/health-topics/air-pollution#tab=tab_1
75. Keykhosravi, S. S., Nejadkoorki, F., & Amintoosi, M. (2019). Estimation of Artificial Neural Networks (MLP and RBF) Accuracy in Anticipation of the Dust of the Sabzevar Cement Factory. Journal of Research in Environmental Health, 5(1), 43-52. doi: 10.22038/jreh.2019.38083.1277. (in Persian)
76. Kumar, L. K. L., & Kumar, G. K. D. G. (2024). A Prediction Model for Air Pollution using Artificial Neural Networks. [DOI:10.21203/rs.3.rs-3866173/v1]
77. Liu, J. B., Zheng, Y. Q., & Lee, C. C. (2024). Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory. Applied Energy, 357, 122529.https://www.sciencedirect.com/science/article/abs/pii/S0306261923018937#preview-section-introduction [DOI:10.1016/j.apenergy.2023.122529]
78. López-Gonzales, J. L., Gómez Lamus, A. M., Torres, R., Canas Rodrigues, P., & Salas, R. (2023). Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values. Stats, 6(4), 1241-1259. [DOI:10.3390/stats6040077]
79. Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., & Rahmati, M. (2019). Air pollution prediction by using an artificial neural network model. Clean technologies and environmental policy, 21, 1341-1352. [DOI:10.1007/s10098-019-01709-w] [PMID] []
80. Mehrjo, F., Baghkhanipour, M., & Alam, A. (2023). Investigating air pollution caused by the ferrosilicon industry (Case study: Iran Ferroalloy Factory, Lorestan). Journal of Natural Environmental Hazards, 12(37), 117-132. doi: 10.22111/jneh.2023.43635.1923. (in Persian)
81. Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anesthesia, 22(1), p. 67. https://doi.org/10.4103/aca.ACA_157_18 [DOI:10.4103%2Faca.ACA_157_18] [PMID] []
82. Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32, 495-518. [DOI:10.1007/s00521-019-04109-9]
83. Mosley, S. (2014). Environmental history of air pollution and protection. In The basic environmental history (pp. 143-169). Cham: Springer International Publishing. [DOI:10.1007/978-3-319-09180-8_5]
84. Qorbani Salkhord R, Mobasheri MR, Rahimzadehgan M. A Fast Method for Assessment of PM10 Concentration Using MODIS Images, a Case Study in Tehran. Hakim Research Journal 2012;15(2):166-177. (in Persian)
85. Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
86. Rodrıguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35(14), 2433-2447. [DOI:10.1016/S1352-2310(00)00496-9]
87. sadeghi, H., & khaksar, S. (2015). Neural Network Model for Short Term Prediction of PM10 Pollution in Ahvaz City. Environmental Researches, 5(9), 177-186. (in Persian)
88. Shams a , Seyedeh Reyhaneh. Kalantary b , Saba. Jahani c , Ali. Shams d , Seyed Mohammad Parsa. Kalantari e , Behrang. Singh a , Deveshwar. Moeinnadini f , Mazaher. Choi,Yunsoo. (2023). Assessing the effectiveness of artificial neural networks (ANN) and multiple linear regressions (MLR) in forcasting AQI and PM10 and evaluating health impacts through AirQ+ (case study: Tehran). Environmental Pollution, 338, 122623. [DOI:10.1016/j.envpol.2023.122623] [PMID]
89. Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., ... & Dixit, S. (2022). Artificial intelligence technologies for forecasting air pollution and human health: a narrative review. Sustainability, 14(16), 9951. [DOI:10.3390/su14169951]
90. Taheri, S., & Razban, A. (2021). Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Building and Environment, 205, 108164. [DOI:10.1016/j.buildenv.2021.108164]
91. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (pp. 419-429). Elsevier. [DOI:10.1016/B978-0-12-819001-2.00021-8]
92. Wang, Z., Tham, M. T., & JULIAN MORRIS, A. (1992). Multilayer feedforward neural networks: a canonical form approximation of nonlinearity. International Journal of Control, 56(3), 655-672. [DOI:10.1080/00207179208934333]
93. Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., & Mandin, C. (2019). Machine learning and statistical models for predicting indoor air quality. Indoor Air, 29(5), 704-726. [DOI:10.1111/ina.12580] [PMID]
94. Yadav, V., Yadav, A. K., Singh, V., & Singh, T. (2024). Artificial neural network an innovative approach in air pollutant prediction for environmental applications: A review. Results in Engineering, 102305. [DOI:10.1016/j.rineng.2024.102305]
95. Zangooei, Hossein., asadollahfardi. (2017). PM10 Air pollution in mashhad city using artificial neural network and makov chain model. jgs 2017; 17 (47) :39-59. (in Persian)
96. Zhang, H., Srinivasan, R., & Yang, X. (2021). Simulation and analysis of indoor air quality in florida using time series regression (tsr) and artificial neural networks (ann) models. Symmetry, 13(6), 952. [DOI:10.3390/sym13060952]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وبگاه متعلق به تحقیقات کاربردی علوم جغرافیایی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Applied Researches in Geographical Sciences

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)