1. رضایی قلعه، مریم، حق پرست، فرزین و ملکی، آیدا. (1401). بررسی رابطۀ زیرساخت سبز-آبی و کاهش آسیبپذیری سلامت در برابر گرمای شدید متأثر از تغییرات اقلیمی (نمونهموردی: شهر قزوین). باغ نظر، 19(107)، 84-69.
2. شجاع، فائزه و شمسیپور، علی اکبر. (1402). پیشنمایی تغییرات بارشهای آتی حوضههای آبخیز تأمینکننده آب شهر تهران. مخاطرات محیط طبیعی، 12(36)، 180-151.
3. شمسیپور، علیاکبر، صادقی، سلیمه، شجاع، فائزه و مقبل، معصومه. (1402). سنجش خدمات اکوسیستمی کلانشهر تهران و تحلیل میزان حساسیت آنها به محرکهای اقلیمی. مجله شهر پایدار، انتشار آنلاین.
4. شمسیپور، علیاکبر، (1401). نگاشت اقلیم شهر و توصیههای برنامهریزی (مروری بر تجارب جهانی)، موسسه انتشارات دانشگاه تهران، چاپ اول، تهران.
5. صادقی نیا علیرضا، علیجانی، بهلول، ضیائیان، پرویز و خالدی شهریار. (1392). کاربرد تکنیکهای خودهمبستگی فضایی در تحلیل جزیره حرارتی شهر تهران. نشریه تحقیقات کاربردی علوم جغرافیایی، ۱۳ (۳۰)، 90-67.
6. فربودی، مرضیه و زمانی، زهرا. (1401). کاهش جزایر حرارتی شهری از طریق افزایش سبزینگی و سطوح نفوذپذیر در تهران. علوم و تکنولوژی محیط زیست، 3 (24)، 45-31.
7. کورکینژاد، محمدحسن. (1400). نگاشت نقشههای آبوهوای شهری (UCM) تهران، پایاننامه کارشناسی ارشد، استاد راهنما: دکتر علیاکبر شمسیپور، دانشکده جغرافیا، دانشگاه تهران.
8. Abubakar, I. R., & Alshammari, M. S. (2023). Urban planning schemes for developing low-carbon cities in the Gulf Cooperation Council region. Habitat International, 138, 102881. [
DOI:10.1016/j.habitatint.2023.102881]
9. Abulibdeh, A. (2021). Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environmental Earth Sciences, 80, 1-26. [
DOI:10.1007/s12665-021-09540-7] [
PMID] [
]
10. Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Omrany, H., Wang, Z. H., & Akbari, H. (2017). Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. [
DOI:10.1016/j.cities.2016.09.003]
11. Bherwani, H., Singh, A., & Kumar, R. (2020). Assessment methods of urban microclimate and its parameters: A critical review to take the research from lab to land. Urban Climate, 34, 100690. [
DOI:10.1016/j.uclim.2020.100690]
12. Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., & Joost, S. (2021). A spatially explicit approach to simulate urban heat mitigation with InVEST (v3. 8.0). Geoscientific Model Development, 14(6), 3521-3537. [
DOI:10.5194/gmd-14-3521-2021]
13. Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1-9. [
DOI:10.1016/j.enbuild.2013.04.014]
14. Eichelmann, R., Holloway, W. P., Murer, P., Newell, R., & O'Connell, C. (2022). Identifying Urban Heat Mitigation Strategies for Climate Adaptation Planning in Fairfax County, Virginia. In AAG 2022 Annual Meeting.
15. Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., & Melas, D. (2018). A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmospheric Research, 201, 86-101. [
DOI:10.1016/j.atmosres.2017.10.015]
16. Grilo, F., Pinho, P., Aleixo, C., Catita, C., Silva, P., Lopes, N., ... & Branquinho, C. (2020). Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment, 724, 138182. [
DOI:10.1016/j.scitotenv.2020.138182] [
PMID]
17. Hamel, P., Bosch, M., Tardieu, L., Lemonsu, A., de Munck, C., Nootenboom, C., ... & Sharp, R. P. (2023). Calibrating and validating the InVEST urban cooling model: Case studies in France and the United States. EGUsphere, 2023, 1-25.
https://doi.org/10.5194/egusphere-2023-928 [
DOI:10.5194/egusphere-2023-928-supplement]
18. Han, B., Wu, T., Cai, Z., Meng, N., Wang, H., & Ouyang, Z. (2023). Evaluating the benefits of ecosystem-based urban cooling using a dynamic "on-site" method. Science of The Total Environment, 880, 162908. [
DOI:10.1016/j.scitotenv.2023.162908] [
PMID]
19. Hu, Y., Wang, C., & Li, J. (2023). Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China. Land, 12(5), 963. [
DOI:10.3390/land12050963]
20. Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019). Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 25, 100217. [
DOI:10.1016/j.wace.2019.100217]
21. Kunapo, J., Fletcher, T. D., Ladson, A. R., Cunningham, L., & Burns, M. J. (2018). A spatially explicit framework for climate adaptation. Urban Water Journal, 15(2), 159-166. [
DOI:10.1080/1573062X.2018.1424216]
22. Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A review of urban microclimate research based on CiteSpace and VOSviewer analysis. International Journal of Environmental Research and Public Health, 19(8), 4741. [
DOI:10.3390/ijerph19084741] [
PMID] [
]
23. Li, X., & Zhou, W. (2019). Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban Forestry & Urban Greening, 41, 255-263. [
DOI:10.1016/j.ufug.2019.04.008]
24. Lonsdorf, E. V., Nootenboom, C., Janke, B., & Horgan, B. P. (2021). Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landscape and Urban Planning, 208, 104022. [
DOI:10.1016/j.landurbplan.2020.104022]
25. Lopez-Cabeza, V. P., Alzate-Gaviria, S., Diz-Mellado, E., Rivera-Gomez, C., & Galan-Marin, C. (2022). Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustainable Cities and Society, 81, 103872. [
DOI:10.1016/j.scs.2022.103872]
26. Mumtaz, L. Z., Atianta, L., & Kustiwan, I. (2023). Cooling capacity assessment in Karet Tengsin Platinum Integrated Area. In IOP Conference Series: Earth and Environmental Science (Vol. 1263, No. 1, p. 012025). IOP Publishing. [
DOI:10.1088/1755-1315/1263/1/012025]
27. Najafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and temporal analysis of surface urban heat island and thermal comfort using Landsat satellite images between 1989 and 2019: A case study in Tehran. Remote Sensing, 13(21), 4469. [
DOI:10.3390/rs13214469]
28. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and urban planning, 134, 127-138. [
DOI:10.1016/j.landurbplan.2014.10.018]
29. Oke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and applied climatology, 84, 179-190. [
DOI:10.1007/s00704-005-0153-0]
30. Pham, J. V., Baniassadi, A., Brown, K. E., Heusinger, J., & Sailor, D. J. (2019). Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort. Urban Climate, 29, 100500. [
DOI:10.1016/j.uclim.2019.100500]
31. Ramyar, R., Ramyar, A., Kialashaki, Y., Bryant, M., & Ramyar, H. (2019). Exploring reconfiguration scenarios of high-density urban neighborhoods on urban temperature-The case of Tehran (Iran). Urban Forestry & Urban Greening, 44, 126398. [
DOI:10.1016/j.ufug.2019.126398]
32. Rao, P., Tassinari, P., & Torreggiani, D. (2023). Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon, 9(8). [
DOI:10.1016/j.heliyon.2023.e18423] [
PMID]
33. Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 63, 102459. [
DOI:10.1016/j.scs.2020.102459]
34. Roshan, G., Sarli, R., & Grab, S. W. (2021). The case of Tehran's urban heat island, Iran: Impacts of urban 'lockdown'associated with the COVID-19 pandemic. Sustainable Cities and Society, 75, 103263. [
DOI:10.1016/j.scs.2021.103263] [
PMID] [
]
35. Schatz, J., & Kucharik, C. J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371-2386. [
DOI:10.1175/JAMC-D-14-0107.1]
36. Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing, 47, 1063-1071. [
DOI:10.1007/s12524-019-00966-y]
37. Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., … Wyatt, K. (2020). InVEST 3.8.7.post12+ug.gbcad34f User's Guide. The Natural Capital Project.Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
38. Silva, J. S., da Silva, R. M., & Santos, C. A. G. (2018). Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Building and Environment, 136, 279-292. [
DOI:10.1016/j.buildenv.2018.03.041]
39. Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U., & Che-Ani, A. I. (2014). Mitigating the urban heat island effect in megacity Tehran. Advances in Meteorology, 2014, 1-19. [
DOI:10.1155/2014/547974]
40. Stewart, I. D., &Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. [
DOI:10.1175/BAMS-D-11-00019.1]
41. Wang, X., Dallimer, M., Scott, C. E., Shi, W., & Gao, J. (2021). Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of The Total Environment, 770, 145211. [
DOI:10.1016/j.scitotenv.2021.145211] [
PMID]
42. Wong, N. H., Tan, C. L., Kolokotsa, D. D., & Takebayashi, H. (2021). Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2(3), 166-181. [
DOI:10.1038/s43017-020-00129-5]
43. World Meteorological Organization (WMO) WMO; Switzerland: 2022. State of the Global Climate 2021. WMO-No. 1290. Geneva 2.
44. Zardo, L., Geneletti, D., Pérez-Soba, M., & Van Eupen, M. (2017). Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem services, 26, 225-235. [
DOI:10.1016/j.ecoser.2017.06.016]
45. Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643.
https://doi.org/10.1038/s41598-024-55490-y [
DOI:10.1038/s41598-023-50757-2]
46. Zawadzka, J. E., Harris, J. A., & Corstanje, R. (2021). Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning, 214, 104163. [
DOI:10.1016/j.landurbplan.2021.104163]
47. Zhong, C., Guo, H., Swan, I., Gao, P., Yao, Q., & Li, H. (2023). Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat International, 138, 102869. [
DOI:10.1016/j.habitatint.2023.102869]