Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shoja F, Sadeghi S, Shamsipour. (2025). Quantifying the Heat Mitigation Capacity of Green-Blue Infrastructures in the Metropolis of Tehran. jgs. 25(78), doi:10.61186/jgs.25.78.19
URL: http://jgs.khu.ac.ir/article-1-4315-en.html
1- Faculty of Geography, University of Tehran
2- Faculty of Geography, University of Tehran , shamsipr@ut.ac.ir
Abstract:   (2622 Views)
The aim of this research is to evaluate the heat mitigation index (HMI) in the Tehran metropolitan area using the Urban Cooling Model(UCM)approach in a spatial framework. UCM produces maps of the Heat Mitigation Index. This index estimates the cooling potential of urban green spaces in a given location, taking into account various parameters such as evapotranspiration, tree shading, albedo, rural reference air temperature, urban heat island intensity, air temperature maximum blending, and maximum cooling distance. The assessment of environmental factors influencing the UCM in the study area revealed that the urban heat island effect was least intense in regions 1, 22, and the northern parts of region 4 of Tehran municipality, where there are scattered trees, shrubs, open low-rise buildings, and water bodies. The temperature differential between the city and the suburbs ranged from 0 to 1.3 degrees Celsius. However, the study area's central parts showed the highest intensity of the urban heat island, particularly in regions 21, 13, and 14. These regions have a dense and compact texture and an expansion of impervious surfaces, resulting in the lowest values of the evapotranspiration index and albedo.Based on these parameters, the study area's HMI index showed that the cooling capacity varies from 0.08 in the central parts of the city to 0.9 in areas affected by green spaces and water bodies. The maximum cooling capacity index is concentrated in areas with dense and scattered tree cover in the region. On average, these areas have been able to neutralise 2.48 degrees Celsius of the urban heat island effect with a cooling capacity of 63%. The methodology employed in this research can be used as a reference for urban designers in integrating urban cooling approaches and heat island mitigation strategies in urban planning and design.
 
     
Type of Study: Research | Subject: climatology

References
1. رضایی قلعه، مریم، حق پرست، فرزین و ملکی، آیدا. (1401). بررسی رابطۀ زیرساخت سبز-آبی و کاهش آسیب‌پذیری سلامت در برابر گرمای شدید متأثر از تغییرات اقلیمی (نمونه‌موردی: شهر قزوین). باغ نظر، 19(107)، 84-69.
2. شجاع، فائزه و شمسی‌پور، علی اکبر. (1402). پیش‌نمایی تغییرات بارش‌های آتی حوضه‌های آبخیز تأمین‌کننده آب شهر تهران. مخاطرات محیط طبیعی، 12(36)، 180-151.
3. شمسی‌پور، علی‌اکبر، صادقی، سلیمه، شجاع، فائزه و مقبل، معصومه. (1402). سنجش خدمات اکوسیستمی کلان‌شهر تهران و تحلیل میزان حساسیت آن‌ها به محرک‌های اقلیمی. مجله شهر پایدار، انتشار آنلاین.
4. شمسی‌پور، علی‌اکبر، (1401). نگاشت اقلیم شهر و توصیه‌های برنامه‌ریزی (مروری بر تجارب جهانی)، موسسه انتشارات دانشگاه تهران، چاپ اول، تهران.
5. صادقی نیا علیرضا، علیجانی، بهلول، ضیائیان، پرویز و خالدی شهریار. (1392). کاربرد تکنیک‌های خودهمبستگی فضایی در تحلیل جزیره حرارتی شهر تهران. نشریه تحقیقات کاربردی علوم جغرافیایی، ۱۳ (۳۰)، 90-67.
6. فربودی، مرضیه و زمانی، زهرا. (1401). کاهش جزایر حرارتی شهری از طریق افزایش سبزینگی و سطوح نفوذپذیر در تهران. علوم و تکنولوژی محیط زیست، 3 (24)، 45-31.
7. کورکی‌نژاد، محمدحسن. (1400). نگاشت نقشه‌های آب‌وهوای شهری (UCM) تهران، پایان‌نامه کارشناسی ارشد، استاد راهنما: دکتر علی‌اکبر شمسی‌پور، دانشکده جغرافیا، دانشگاه تهران.
8. Abubakar, I. R., & Alshammari, M. S. (2023). Urban planning schemes for developing low-carbon cities in the Gulf Cooperation Council region. Habitat International, 138, 102881. [DOI:10.1016/j.habitatint.2023.102881]
9. Abulibdeh, A. (2021). Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environmental Earth Sciences, 80, 1-26. [DOI:10.1007/s12665-021-09540-7] [PMID] []
10. Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Omrany, H., Wang, Z. H., & Akbari, H. (2017). Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. [DOI:10.1016/j.cities.2016.09.003]
11. Bherwani, H., Singh, A., & Kumar, R. (2020). Assessment methods of urban microclimate and its parameters: A critical review to take the research from lab to land. Urban Climate, 34, 100690. [DOI:10.1016/j.uclim.2020.100690]
12. Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., & Joost, S. (2021). A spatially explicit approach to simulate urban heat mitigation with InVEST (v3. 8.0). Geoscientific Model Development, 14(6), 3521-3537. [DOI:10.5194/gmd-14-3521-2021]
13. Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1-9. [DOI:10.1016/j.enbuild.2013.04.014]
14. Eichelmann, R., Holloway, W. P., Murer, P., Newell, R., & O'Connell, C. (2022). Identifying Urban Heat Mitigation Strategies for Climate Adaptation Planning in Fairfax County, Virginia. In AAG 2022 Annual Meeting.
15. Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., & Melas, D. (2018). A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece). Atmospheric Research, 201, 86-101. [DOI:10.1016/j.atmosres.2017.10.015]
16. Grilo, F., Pinho, P., Aleixo, C., Catita, C., Silva, P., Lopes, N., ... & Branquinho, C. (2020). Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment, 724, 138182. [DOI:10.1016/j.scitotenv.2020.138182] [PMID]
17. Hamel, P., Bosch, M., Tardieu, L., Lemonsu, A., de Munck, C., Nootenboom, C., ... & Sharp, R. P. (2023). Calibrating and validating the InVEST urban cooling model: Case studies in France and the United States. EGUsphere, 2023, 1-25. https://doi.org/10.5194/egusphere-2023-928 [DOI:10.5194/egusphere-2023-928-supplement]
18. Han, B., Wu, T., Cai, Z., Meng, N., Wang, H., & Ouyang, Z. (2023). Evaluating the benefits of ecosystem-based urban cooling using a dynamic "on-site" method. Science of The Total Environment, 880, 162908. [DOI:10.1016/j.scitotenv.2023.162908] [PMID]
19. Hu, Y., Wang, C., & Li, J. (2023). Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China. Land, 12(5), 963. [DOI:10.3390/land12050963]
20. Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2019). Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 25, 100217. [DOI:10.1016/j.wace.2019.100217]
21. Kunapo, J., Fletcher, T. D., Ladson, A. R., Cunningham, L., & Burns, M. J. (2018). A spatially explicit framework for climate adaptation. Urban Water Journal, 15(2), 159-166. [DOI:10.1080/1573062X.2018.1424216]
22. Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A review of urban microclimate research based on CiteSpace and VOSviewer analysis. International Journal of Environmental Research and Public Health, 19(8), 4741. [DOI:10.3390/ijerph19084741] [PMID] []
23. Li, X., & Zhou, W. (2019). Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban Forestry & Urban Greening, 41, 255-263. [DOI:10.1016/j.ufug.2019.04.008]
24. Lonsdorf, E. V., Nootenboom, C., Janke, B., & Horgan, B. P. (2021). Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landscape and Urban Planning, 208, 104022. [DOI:10.1016/j.landurbplan.2020.104022]
25. Lopez-Cabeza, V. P., Alzate-Gaviria, S., Diz-Mellado, E., Rivera-Gomez, C., & Galan-Marin, C. (2022). Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustainable Cities and Society, 81, 103872. [DOI:10.1016/j.scs.2022.103872]
26. Mumtaz, L. Z., Atianta, L., & Kustiwan, I. (2023). Cooling capacity assessment in Karet Tengsin Platinum Integrated Area. In IOP Conference Series: Earth and Environmental Science (Vol. 1263, No. 1, p. 012025). IOP Publishing. [DOI:10.1088/1755-1315/1263/1/012025]
27. Najafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and temporal analysis of surface urban heat island and thermal comfort using Landsat satellite images between 1989 and 2019: A case study in Tehran. Remote Sensing, 13(21), 4469. [DOI:10.3390/rs13214469]
28. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and urban planning, 134, 127-138. [DOI:10.1016/j.landurbplan.2014.10.018]
29. Oke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and applied climatology, 84, 179-190. [DOI:10.1007/s00704-005-0153-0]
30. Pham, J. V., Baniassadi, A., Brown, K. E., Heusinger, J., & Sailor, D. J. (2019). Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort. Urban Climate, 29, 100500. [DOI:10.1016/j.uclim.2019.100500]
31. Ramyar, R., Ramyar, A., Kialashaki, Y., Bryant, M., & Ramyar, H. (2019). Exploring reconfiguration scenarios of high-density urban neighborhoods on urban temperature-The case of Tehran (Iran). Urban Forestry & Urban Greening, 44, 126398. [DOI:10.1016/j.ufug.2019.126398]
32. Rao, P., Tassinari, P., & Torreggiani, D. (2023). Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: A spatio-temporal analysis of remotely sensed data. Heliyon, 9(8). [DOI:10.1016/j.heliyon.2023.e18423] [PMID]
33. Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 63, 102459. [DOI:10.1016/j.scs.2020.102459]
34. Roshan, G., Sarli, R., & Grab, S. W. (2021). The case of Tehran's urban heat island, Iran: Impacts of urban 'lockdown'associated with the COVID-19 pandemic. Sustainable Cities and Society, 75, 103263. [DOI:10.1016/j.scs.2021.103263] [PMID] []
35. Schatz, J., & Kucharik, C. J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371-2386. [DOI:10.1175/JAMC-D-14-0107.1]
36. Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing, 47, 1063-1071. [DOI:10.1007/s12524-019-00966-y]
37. Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., … Wyatt, K. (2020). InVEST 3.8.7.post12+ug.gbcad34f User's Guide. The Natural Capital Project.Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
38. Silva, J. S., da Silva, R. M., & Santos, C. A. G. (2018). Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Building and Environment, 136, 279-292. [DOI:10.1016/j.buildenv.2018.03.041]
39. Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U., & Che-Ani, A. I. (2014). Mitigating the urban heat island effect in megacity Tehran. Advances in Meteorology, 2014, 1-19. [DOI:10.1155/2014/547974]
40. Stewart, I. D., &Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. [DOI:10.1175/BAMS-D-11-00019.1]
41. Wang, X., Dallimer, M., Scott, C. E., Shi, W., & Gao, J. (2021). Tree species richness and diversity predicts the magnitude of urban heat island mitigation effects of greenspaces. Science of The Total Environment, 770, 145211. [DOI:10.1016/j.scitotenv.2021.145211] [PMID]
42. Wong, N. H., Tan, C. L., Kolokotsa, D. D., & Takebayashi, H. (2021). Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2(3), 166-181. [DOI:10.1038/s43017-020-00129-5]
43. World Meteorological Organization (WMO) WMO; Switzerland: 2022. State of the Global Climate 2021. WMO-No. 1290. Geneva 2.
44. Zardo, L., Geneletti, D., Pérez-Soba, M., & Van Eupen, M. (2017). Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem services, 26, 225-235. [DOI:10.1016/j.ecoser.2017.06.016]
45. Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643. https://doi.org/10.1038/s41598-024-55490-y [DOI:10.1038/s41598-023-50757-2]
46. Zawadzka, J. E., Harris, J. A., & Corstanje, R. (2021). Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning, 214, 104163. [DOI:10.1016/j.landurbplan.2021.104163]
47. Zhong, C., Guo, H., Swan, I., Gao, P., Yao, Q., & Li, H. (2023). Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat International, 138, 102869. [DOI:10.1016/j.habitatint.2023.102869]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)