Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rodsarabi M, Baaghideh M, Entezari A, mayvaneh F. (2025). Evaluation of Thermal Comfort in Educational Buildings, Case Study of a school-Sabzevar. jgs. 25(78), doi:10.61186/jgs.25.78.7
URL: http://jgs.khu.ac.ir/article-1-4237-en.html
1- Hakim Sabzevari University., Khorasan Razavi, Tohidshahr, Hakim Sabzevari University, Faculty of Geography and Environmental Sciences
2- Hakim Sabzevari University., Khorasan Razavi, Tohidshahr, Hakim Sabzevari University, Faculty of Geography and Environmental Sciences , entezari@hsu.ac.ir
Abstract:   (2168 Views)
In order to evaluate the thermal comfort conditions in the classroom, a field study was conducted in Sabzevar. Students' thermal sensations of class conditions were recorded at different hours of the day during the 2009-2010 academic year for different classes. At the same time, the temperature and humidity values of the classes were collected by a Data logger. To examine the differences, ANOVA, and Kruskal-Wallis methods were used. The results showed that the location of the classrooms in terms of geographical direction and building floor did not make a significant difference in the temperature and humidity, while the hourly differences of these parameters were significant.
In general, the responses related to the sensation of cooling had higher percentages than the state of heating (24% vs. 12%).
The thermal sensation in different months showed significant differences and the month of October had the lowest frequency in the feeling related to thermal comfort. In all months, except for October, the students' preferred was "heating". Although the performance of the heating system has been assessed as adequate, the operation time of this system should be done at a shorter distance from the start of morning classes to avoid wasting a significant portion of energy.
Although the temperature and humidity inside the classrooms did not show a significant monthly difference, but in terms of students' thermal sensation between different months, there was a statistically significant difference, therefore, the thermal sensation is something beyond physical characteristics (temperature and humidity) and In addition to being affected by climatic parameters, it is also strongly influenced by individual characteristics (sex, age, weight, height, clothing and activity level).

 
     
Type of Study: Research | Subject: climatology

References
1. چهرازی, غ., دهقان, ن., صنایعیان, ه., & گندمکار, ا. (2021). تعیین محدودۀ آسایش حرارتی در فضای باز دبستان‌های دخترانۀ شهر اصفهان. صفه, 31(3), 43-58. doi:10.52547/sofeh.31.3.43 [DOI:10.52547/sofeh.31.3.43]
2. حیدری, ش. (1393). سازگاری حرارتی در معماری نخستین قدم در صرف‌جویی مصرف انرژی (Vol. 1). تهران: موسسه چاپ و انتشارات دانشگاه تهران.
3. زارع مهذبیه, آ., حیدری, ش., & شاهچراغی, آ. (1398). بررسی کیفیت محیطی داخلی خانه های قاجاری شیراز با تاکید بر آسایش حرارتی و نور روز (نمونه موردی: خانه نعمتی). معماری اقلیم گرم و خشک, 7.
4. فتاحی معصوم, آ. س., اکبری, ا., & طبسی, م. (1399). شناسایی تاثیرات عوامل اقلیمی بر معماری مدرسه غیاثیه خرگرد خواف. پژوهشنامه خراسان بزرگ, 10
5. Benedict, F. G., & Carpenter, T. M. (1910). The metabolism and energy transformations of healthy man during rest: Carnegie institution of Washington.
6. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
7. Ghermezi, M., & Nasrollahi, F. (2019). The Effect of Building Typology on the Reduction of Energy Consumption in Esfahan Schools. Iranian Journal of Energy, 22(2), 5-21.
8. Heracleous, C., & Michael, A. (2020). Thermal comfort models and perception of users in free-running school buildings of East-Mediterranean region. Energy and Buildings, 215, 109912. [DOI:10.1016/j.enbuild.2020.109912]
9. Kim, J., & de Dear, R. (2018). Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 127, 13-22. [DOI:10.1016/j.buildenv.2017.10.031]
10. Kunst, A. E., Groenhof, F., & Mackenbach, J. P. (1994). The association between two windchill indices and daily mortality variation in The Netherlands. American Journal of public health, 84(11), 1738-1742. [DOI:10.2105/AJPH.84.11.1738] [PMID] []
11. Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor air, 15(1), 27-52. [DOI:10.1111/j.1600-0668.2004.00320.x] [PMID]
12. Merabtine, A., Maalouf, C., Hawila, A. A. W., Martaj, N., & Polidori, G. (2018). Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study. Building and Environment, 145, 62-76. [DOI:10.1016/j.buildenv.2018.09.015]
13. Nasrollahi, N., Knight, I., & Jones, P. (2007). Surveyed thermal comfort in Iranian offices. Build Environ, 1(10).
14. Olgay, V., & Olgay, A. (1963). Design with climate. Bioclimatic Approach to Architectural Regionalism, New Jersey.
15. Papazoglou, E., Moustris, K. P., Nikas, K.-S. P., Nastos, P. T., & Statharas, J. C. (2019). Assessment of human thermal comfort perception in a non-air-conditioned school building in Athens, Greece. Energy Procedia, 157, 1343-1352. [DOI:10.1016/j.egypro.2018.11.299]
16. Pourshaghaghy, A., & Omidvari, M. (2012). Examination of thermal comfort in a hospital using PMV-PPD model. Applied ergonomics, 43(6), 1089-1095. [DOI:10.1016/j.apergo.2012.03.010] [PMID]
17. Rodríguez, C. M., Coronado, M. C., & Medina, J. M. (2021). Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Building and Environment, 194, 107682. [DOI:10.1016/j.buildenv.2021.107682]
18. Teli, D., Bourikas, L., James, P. A., & Bahaj, A. S. (2017). Thermal performance evaluation of school buildings using a children-based adaptive comfort model. Procedia environmental sciences, 38, 844-851. [DOI:10.1016/j.proenv.2017.03.170]
19. Ter Mors, S., Hensen, J. L., Loomans, M. G., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454-2461. [DOI:10.1016/j.buildenv.2011.05.025]
20. Trebilcock, M., Soto-Muñoz, J., & Piggot-Navarrete, J. (2020). Evaluation of thermal comfort standards in office buildings of Chile: Thermal sensation and preference assessment. Building and Environment, 183, 107158. [DOI:10.1016/j.buildenv.2020.107158]
21. Trebilcock, M., Soto-Muñoz, J., Yañez, M., & Figueroa-San Martin, R. (2017). The right to comfort: A field study on adaptive thermal comfort in free-running primary schools in Chile. Building and Environment, 114, 455-469. [DOI:10.1016/j.buildenv.2016.12.036]
22. Verma, P. K., & Netam, N. (2020). A case study on thermal comfort analysis of school building. Materials Today: Proceedings, 28, 2501-2504. [DOI:10.1016/j.matpr.2020.04.829]
23. Wyon, D. P. (2004). The effects of indoor air quality on performance and productivity. Indoor air, 14, 92-101. [DOI:10.1111/j.1600-0668.2004.00278.x] [PMID]
24. Zomorodian, Z. S., Aminian, S., & Tahbaz, M. (2017). Thermal Comfort Assessment in Classrooms in the Hot and Dry Climate of Iran Field Survey in a Primary School of Kashan. Honar-Ha-Ye-Ziba: Memary Va Shahrsazi, 21(4), 17-28.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)