Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi R, saligheh M, Naserzadeh M H, Akbari M. (2025). An analysis of cyclonic dominant patterns on cold period precipitation in the mid-western of Iran. jgs. 25(78), doi:10.61186/jgs.25.78.2
URL: http://jgs.khu.ac.ir/article-1-3935-en.html
1- Ph.D. student in climatology, Kharazmi University, std_rastegar365@khu.ac.ir , std_rastegar365@khu.ac.ir
2- Associated Professor of climatology, kharazmi University, Tehran, Iran ., salighe1338@gmail.com
3- Assistant Professor of climatology, kharazmi University, Tehran, Iran ., Nasserzadeh2100@yahoo.com
4- Associated Professor of climatology, kharazmi University, Tehran, Iran ., mehryakbary@khu.ac.ir
Abstract:   (4599 Views)
Extratropical cyclones according to the frequency, duration, and intensity, the major cause of mid-and high-latitude precipitation across the Mediterranean during winter and autumn. For this research using network data of ECMWF climatic variables with 6-hour time resolution and 0.25 × 0.25 spatial resolution from1979-2016 and were used of 4 Basin stations precipitation data from the Asfezari database from 1979-2016. The results showed that the first pattern is the Mediterranean trough pattern which has the highest frequency of 42%. In this pattern, the low-level due to the presence of a high-level that acts as a barrier have caused the deepening of the Mediterranean low-level and its axis extends to the Red Sea, and due to the collision of low-level and high-level on the region, instability is intensified and has caused the most rainfall among the patterns.  In contrast to the first pattern, The fourth pattern has the lowest frequency of 10% Which is the trough pattern of western winds which is located on the Caspian Sea but due to high-level in the south of the region has prevented the entry of low-level and is located in the northern part of the study area due to this, the isobar in the north of the region have become orbital as a result, fewer cyclones enter the area, resulting in less rainfall between patterns. The results also showed that the frequency of cold-core cyclones was 60% in winter and 40% in autumn, but the frequency of hot core cyclones was 62% in winter and 38% in autumn, which in winter, the frequency of hot core cyclones has increased compared to cold-core cyclones, while in the fall the frequency of hot-core cyclones has decreased compared to cold-core. In the last decade, both the frequency of occurrence of cyclones and their intensity has decreased compared to the last two decades. In terms of cyclogenesis places, the western part of the study area has always been active, And with the onset of the cold season from autumn to winter, cyclogeneses places are gradually becoming more active.
     
Type of Study: Research | Subject: climatology

References
1.  ایران‌نژاد، پرویز؛ احمدی گیوی، فرهنگ؛ محمد نژاد، علیرضا (1388) اثر مراکز چرخندزایی مدیترانه بر بارش سالانه ایران در دوره 1960-2002، مجله ژئوفیزیک ایران، دوره 3، شماره 1، صفحه 91-105.
2.  بیات، علی؛ سلیقه، محمد؛ اکبری، مهری (1396) اقلیم‌شناسی سیکلون های باران‌زای زمستانه ایران، مجله‌ تحلیل فضایی مخاطرات محیطی، دوره 4، شماره 2، صفحه 1-18.‎
3. ‌ بیاتی خطیبی، مریم؛ جهانبخش اصل، سعید؛ فرشی فروغ، جواد (1378) تجزیه‌وتحلیل سینوپتیکی بارش‌های منطقه‌ شمال غرب ایران، مجله‌ دانش کشاورزی، دوره 9، شماره 1، صفحه 55-70.
4.  حیدری، محمدامین؛ خوش‌اخلاق، فرامرز (1397) واکاوی اثر گرمایش جهانی بر منطقه کم‌فشار سودان ـ دریای سرخ و ارتباط آن با بارش‌های جنوب غرب ایران، مجله‌ جغرافیا و برنامه‌ریزی محیطی، دوره 29 شماره 2، صفحه 91-112.
5.  خسروی، محمود؛ موحدی، سعید؛ هاشمی عنا، سید کرامت؛ حیدری، بهروز (1391) بررسی همدیدی کنش‌های چرخندی ترازهای مختلف جوی ایران در سال 1369، مجله جغرافیا و توسعه، دوره 12، شماره 35، صفحه 83-95.
6.  علیجانی، بهلول (1374) آب‌وهوای ایران، تهران، انتشارات دانشگاه پیام نور.
7.  علیجانی، بهلول؛ رضایی، محمد؛ جعفری، فرزانه؛ پژوه، فرشاد (1394). تغییرپذیری ارتفاع ژئوپتانسیل تراز 500 هکتوپاسکال و نقش آن در نوسانات دمای ماه ژانویه‌ی ایران، فصلنامه مطالعات جغرافیایی مناطق خشک، دوره 5، شماره 20، صفحه 34-45.‎
8.  کاوسی، رضا؛ موحدی، سعید (1393) بررسی همدیدی کنش‌های چرخندی بر روی ایران در سال 1371، فصلنامه تحقیقات جغرافیایی، دوره 29، شماره 115،، صفحه 97-112.
9.  مارتین، جاناتان (2006) دینامیک جو در عرض‌های میانه، برگردان سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان.
10.  یارنال، برنت (1993) اقلیم‌شناسی همدید و کاربرد آن در مطالعات محیطی، برگردان سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان.
11.  Almazroui, M. & Awad, A. M. (2016). Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmospheric Research, 180, 92-118. [DOI:10.1016/j.atmosres.2016.05.015]
12.  Alpert, P, Neeman, B. U, & Shay-El, Y. (1990). Intermonthly variability of cyclone tracks in the Mediterranean. Journal of Climate, 3(12), 1474-1478. https://doi.org/10.1175/1520-0442(1990)003<1474:IVOCTI>2.0.CO;2 [DOI:10.1175/1520-0442(1990)0032.0.CO;2]
13.  Blender, R, & Schubert, M. (2000). Cyclone tracking in different spatial and temporal resolutions. Monthly Weather Review, 128(2), 377-384. https://doi.org/10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2 [DOI:10.1175/1520-0493(2000)1282.0.CO;2]
14.  Catto, J. L. (2016). Extratropical cyclone classification and its use in climate studies. Reviews of Geophysics, 54(2), 486-520. [DOI:10.1002/2016RG000519]
15.  Chen, S. J, Kuo, Y. H, Zhang, P. Z, & Bai, Q. F. (1991). Synoptic climatology of cyclogenesis over East Asia, 1958-1987. Monthly Weather Review, 119(6), 1407-1418. https://doi.org/10.1175/1520-0493(1991)119<1407:SCOCOE>2.0.CO;2 [DOI:10.1175/1520-0493(1991)1192.0.CO;2]
16.  Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., & Asimakopoulos, D. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243-5257. [DOI:10.1175/2010JCLI3426.1]
17.  Guijarro, J. A, Jansa, A, & Campins, J. (2006). Time variability of cyclonic geostrophic circulation in the Mediterranean. Advances in Geosciences, 7, 45-49. [DOI:10.5194/adgeo-7-45-2006]
18.  Jung, T, Gulev, S. K, Rudeva, I, & Soloviov, V. (2006). Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(619), 1839-1857. [DOI:10.1256/qj.05.212]
19.  Klein, W. H. (1958). The frequency of cyclones and anticyclones in relation to the mean circulation. Journal of Meteorology, 15(1), 98-102. https://doi.org/10.1175/1520-0469(1958)015<0098:TFOCAA>2.0.CO;2 [DOI:10.1175/1520-0469(1958)0152.0.CO;2]
20.  Lim, E. P, & Simmonds, I. (2007). Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979-2001. Journal of Climate, 20(11), 2675-2690. [DOI:10.1175/JCLI4135.1]
21.  Lionello, P, Bhend, J, Buzzi, A, Della-Marta, P. M, Krichak, S. O, Jansa, A. & Trigo, R. (2006). Cyclones in the Mediterranean region: climatology and effects on the environment. In Developments in earth and environmental sciences (Vol. 4, pp. 325-372). Elsevier.‌ [DOI:10.1016/S1571-9197(06)80009-1]
22.  Lukancic, K. (2016). Sensitivity of Strong Extratropical Cyclones to Large-scale Climate Variability in the Contiguous United States (Doctoral dissertation, Southern Illinois University Carbondale).
23.  Maheras, P, Flocas, H. A, Patrikas, I, & Anagnostopoulou, C. (2001). A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(1), 109-130. [DOI:10.1002/joc.599]
24.  Michaelis, A. C, Willison, J, Lackmann, G. M, & Robinson, W. A. (2017). Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo-global warming simulations. Journal of Climate, 30(17), 6905-6925. [DOI:10.1175/JCLI-D-16-0697.1]
25.  Nielsen, J. W, & Dole, R. M. (1992). A survey of extratropical cyclone characteristics during GALE. Monthly Weather Review, 120(7), 1156-1168.‌ https://doi.org/10.1175/1520-0493(1992)120<1156:ASOECC>2.0.CO;2 [DOI:10.1175/1520-0493(1992)1202.0.CO;2]
26.  Oort, A. H, & Vonder Haar, T. H. (1976). On the observed annual cycle in the ocean-atmosphere heat balance over the Northern Hemisphere. Journal of Physical Oceanography, 6(6), 781-800. https://doi.org/10.1175/1520-0485(1976)006<0781:OTOACI>2.0.CO;2 [DOI:10.1175/1520-0485(1976)0062.0.CO;2]
27.  Radinović, D. (1987). Mediterranean cyclones and their influence on the weather and climate. World Meteorological Organization.
28.  Schemm, S, & Sprenger, M. (2015). Frontal‐wave cyclogenesis in the North Atlantic-a climatological characterisation. Quarterly Journal of the Royal Meteorological Society, 141(693), 2989-3005. [DOI:10.1002/qj.2584]
29.  Schemm, S, Sprenger, M, & Wernli, H. (2018). When during their life cycle are extratropical cyclones attended by fronts. Bulletin of the American Meteorological Society, 99(1), 149-165. [DOI:10.1175/BAMS-D-16-0261.1]
30.  Schultz, D. M, Bosart, L. F, Colle, B. A, Davies, H. C, Dearden, C, Keyser, D, ... & Winters, A. C. (2019). Extratropical Cyclones: A Century of Research on Meteorology's Centerpiece. Meteorological Monographs, 59, 16-1. [DOI:10.1175/AMSMONOGRAPHS-D-18-0015.1]
31.  Simmonds, I, & Keay, K. (2000). Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. Journal of Climate, 13(5), 873-885. https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2 [DOI:10.1175/1520-0442(2000)0132.0.CO;2]
32.  Simmonds, I, Burke, C, & Keay, K. (2008). Arctic climate change as manifest in cyclone behavior. Journal of Climate, 21(22), 5777-5796.‌ [DOI:10.1175/2008JCLI2366.1]
33.  Trigo, I. F, Davies, T. D, & Bigg, G. R. (1999). Objective climatology of cyclones in the Mediterranean region. Journal of climate, 12(6), 1685-1696. https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2 [DOI:10.1175/1520-0442(1999)0122.0.CO;2]
34.  Trigo, R. M, & DaCamara, C. C. (2000). Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(13), 1559-1581. https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5 [DOI:10.1002/1097-0088(20001115)20:133.0.CO;2-5]
35.  Wernli, H, & Schwierz, C. (2006). Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology. Journal of the atmospheric sciences, 63(10), 2486-2507. [DOI:10.1175/JAS3766.1]
36.  Whittaker, L. M, & Horn, L. H. (1984). Northern Hemisphere extratropical cyclone activity for four mid‐season months. Journal of Climatology, 4(3), 297-310. [DOI:10.1002/joc.3370040307]
37.  Xia, L, & Zhou, Y. (2018). Tracking Jianghuai Cyclones in China and Their Climate Characteristics. Atmosphere, 9(9), 341.‌ [DOI:10.3390/atmos9090341]
38.  Yanase, W, & Niino, H. (2015). Idealized numerical experiments on cyclone development in the tropical, subtropical, and extratropical environments. Journal of the Atmospheric Sciences, 72(9), 3699-3714.‌ [DOI:10.1175/JAS-D-15-0051.1]
39.  Zhang, Y. C, & Rossow, W. B. (1997). Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. Journal of climate, 10(9), 2358-2373. https://doi.org/10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2 [DOI:10.1175/1520-0442(1997)0102.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)