Search published articles


Showing 4 results for Snow Cover

Majid Vazifedoust, Nima Fayaz, Shahab Araghinejad,
Volume 15, Issue 37 (9-2015)
Abstract

Variation of snow cover area (SCA) in small to large scale catchment can be studied using MODIS snow products on daily to montly time step since the year 2000. However, one of the major problems in applying the MODIS snow products is cloud obscuration which limits the utilization of these products. In the current study, variation of SCA was investigated in Karoun basin, western part of Iran, using MODIS 8-day snow cover product (MOD10A2). More over in order to overcome the cloud barrier in application of snow cover products, a simultaneous employment of the images from both MODIS optical sensor and AMSR-E microwave sensor was recommended. Meeting our target, the combination of MODIS and AMSR-E daily images was exercised to accomplish snow cover area in daily interval and afterwards, a comparison was made between the result and those which had been obtained by the sole utilization of either of them while the weather had been either cloudy and not been overcast. Validation of snow cover gained by combined images was additionally compared with the discharge of one of the catchments existing in Karoun basin. The results demonstrate that regardless of the fact that microwave data, featuring a coarse spatial resolution, can penetrate the cloud cover, on average, AMSR-E images approximately show 16% more snow cover in comparison to MODIS images. The results also illustrate that the correlation existing between snow cover rate of AMSR-E and MODIS images during cloudless days, the difference of average snow cover area decreases from 16% to 5%. Moreover, the upshot of validation by the exercise of daily discharge data indicates that by possessing a correlation coefficient of 0.66, the correlation of snow cover and discharge in combined images features a higher accuracy in comparison to MODIS images with a correlation coefficient of 0.55.
Dr. Ebrahim Fattahi, Shookat Moghimi,
Volume 19, Issue 54 (9-2019)
Abstract

 In this study in order to monitor snow cover, the Moderate Resolution Imaging Spectroradiometer (MODIS) optical images were used, while for detection of snow covered areas, the  snow index-NDSI, was applied. The results showed - according to the climatic conditions of the region- during the following months: December, January, February and March, most of the area is covered by snow and the maximum extent of snow cover occurred in January. In West Azerbaijan province there is found a negative trend of snow cover with a drastically reduction in January, as well as the provinces East Azerbaijan and Ardebil showed the decreasing of snow cover in this month. The results of this study show that, changes in snow cover imply a rise in temperature in this region leading to the reduction of snow cover in January. This trend represents global warming and climate change impacts on snow cover in the study area. Investigation of extreme indices  confirms the assumption that by taking temperature increase into consideration, regional winter precipitation pattern has been changed from snow to rain, causing the reduction of snow storage in the catchment of study area. In addition ,the extreme temperature index study  in the period of 2011- 2040 and the baseline by considering climate change approach in North West of Iran by using outputs of general circulation models under A2 scenario and downscaling models LARS-WG indicates the number of frost days or the number of  icy days decreased compared to the baseline which is not unexpected according to reports by the Intergovernmental Panel on Climate Change (IPCC) as well as several studies confirmed  global warming. Moreover, indices such as growth period increased, while diurnal temperature variation decreased compared to the baseline confirming   snow cover reduction in the region as a threat of snow storage in the region. 

Moslem Seydi, Kamal Omidvar, Gholamali Mozafari, Ahmad Mazidi,
Volume 25, Issue 77 (6-2025)
Abstract

Climate change is a significant environmental concern due to the sensitivity of glacier melting processes and snow density to climate variations. Currently, a range of satellite sensors, including AVHRR, MODIS, GEOS, and MERIS, are employed for snow monitoring and are extensively utilized to analyze fluctuations and changes in global snow cover. The MODIS sensor is particularly favored for its extensive global spatial coverage, suitable spatial accuracy, and frequent temporal coverage across various scales. Consequently, this study utilizes snow products derived from the MODIS sensor. In this investigation, data on snow-related days from the statistical period of 1989 to 2018 were collected for three provinces: Kermanshah, Ilam, and Lorestan. This data was processed using MODIS snow cover information pertinent to the Middle Zagros region, in conjunction with remote sensing techniques. The study provides a detailed examination of snow cover changes within the specified area. The Normalized Difference Snow Index (NDSI) was employed to detect snow cover within the MODIS sensor products. To differentiate pixels and identify various phenomena, the acquired images were processed using Geographic Information Systems (GIS) technology. Analysis of seasonal snow cover changes using MODIS sensor imagery indicates a significant decreasing trend in the majority of the studied area, particularly in the elevated regions. Notably, only the western and southwestern regions of the study area exhibit no discernible decreasing trend. Furthermore, the examination of snow-covered days throughout the study period reveals a decrease in snow cover in the Middle Zagros, with these changes intensifying in recent years, especially in the snow-covered areas of the region. Changes in snow cover during the winter months, particularly in elevated areas, were observed to be more pronounced compared to other seasons and regions within the study area.

Sharifeh Zarei, Dr. Bohloul Alijani, Dr. Zahra Hejazizadeh, Dr. Bakhtiar Mohammadi,
Volume 25, Issue 78 (9-2025)
Abstract

This study investigates the most significant synoptic patterns associated with widespread snowfall in the eastern half of Iran. To achieve this, weather code data and snow depth records from synoptic stations in the eastern half of the country were obtained from the Iranian Meteorological Organization for the statistical period of 1371-1400 (1992-2021), focusing on the months of October to March. Days with simultaneous snowfall covering more than 70% of the study area were identified as widespread snowfall events. For the synoptic-dynamic analysis of these events, a classification method utilizing cluster analysis was employed. Maps of representative days were generated, including variables such as atmospheric temperature, moisture flux, geopotential height, vorticity, front formation, jet stream location, omega index, and meridional and zonal wind data. Additionally, trend analysis was conducted using the Mann-Kendall test. The results revealed that three primary synoptic patterns are responsible for widespread snowfall in the study area. These patterns include: (1) high-pressure systems over Siberia and central Europe coupled with low-pressure systems over eastern Iran; (2) high-pressure systems over western Iran paired with low-pressure systems over Sudan; and (3) high-pressure systems over central Europe combined with low-pressure systems over eastern Iran and Afghanistan. In all patterns, the intensification of meridional flows in the westerly winds, along with the formation of high- and low-pressure centers, creates blocking conditions that disrupt the westerly flow and promote upward air motion. The concentration of negative omega fields and positive relative vorticity advection, coupled with the positioning of northeastern Iran in the left exit region of the Subtropical Jet Stream, contributes to significant atmospheric instability and widespread snowfall in the region. Furthermore, the trend analysis indicated that, although there is no statistically significant trend in the number of snowfall days in northeastern Iran, the overall number of snowfall days has decreased over time.


Page 1 from 1     

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)