Search published articles


Showing 5 results for Goodarzi

Mohammadreza Goodarzi, Atiyeh Fatehifar,
Volume 19, Issue 53 (6-2019)
Abstract

In the present time, with the increase of industrial activities and the neglected environmental issues, the effects of climate change have become more evident and poses this phenomenon as a global difficult. Increasing the probability of occurrence of extreme climatic events such as flood and increasing the frequency and intensity of the effects of climate change. The northwest of the country is one of the most vulnerable areas of the country due to its semi-arid and mountainous climates and high rainfall variability. Therefore, zoning due to climate change is essential. Therefore, in this study, in order to investigate the risk of flood in the Azarshahr basin, due to climate change, using the CanESM2 general circulation model under RCP8.5 scenarios negativity according to the assessment report fifth IPCC, rainfall and temperature variables were down scaling by Statistical down scaling model (SDSM). Then,with hydrological model SWAT the daily runoff, the basin map and the lines of the canals are achieved. The results of the evaluation of the SDSM model with a coefficient of determination and Nash-Sutcliff 0.95 on average represent the good performance of the model in the down scaling of large scale data. The results show an increase of 0.23 ° C and 4.53% rainfall and maximum discharge. The basin is zoned with the combination of the maximum mean discharge map, the coefficient and distance from the river with the AHP approach. Due to the zoning they are 41.55% of the area of the basin, at very low and low risk, 27.23% at average risk and 31.2% at high and very high risk. Also, with the final map, it became clear that the mid-basin had a high risk due to its prerequisite conditions and that it needed to carry out managerial actions.

Tooba Alizadeh, Majid Rezaei Banafsheh, Hashem Rostamzadeh, Gholamreza Goodarzi, Hedar Maleki, Hamzeh Alizadeh,
Volume 24, Issue 74 (9-2024)
Abstract

The aim of this study was to identify the epicenter and co-occurrence factors of dust storm wave from 1 to 3 November 2017 in Kermanshah. To investigate the synoptic conditions of the causes of this phenomenon, from the European Central Center (ESMWF) mid-term weather forecast data set with a resolution of 0.125 degrees of arc including, geopotential height, omega, sea level pressure, orbital and meridional components, humidity. The Lagrangian method of HYSPLIT model was used to orient the source of dust particles. in this study, dust storm WRF-chem was simulated using a paired numerical weather forecasting model. Finally, through the processing of MODIS satellite images, its scope was determined. Examination of HYSPLIT tracking maps shows that two general paths for dust transfer to the area can be identified. 1- The northwest-southeast route, which passes through dust cores formed in the deserts of Iraq and Syria, transports dust to the western half of Iran. 2- Southwest to west of Iran and Kermanshah, which is the main source of dust on November 2 and 3, The source of the particles is Kuwait, northern Saudi Arabia and part of Iraq. The spatial distribution of the dust interpreted by the MODIS sensor images is consistent with the spatial distribution of the dust concentration simulated by the WRF-chem model.
Mohammadreza Goodarzi, Maryam Sabaghzadeh, Amirreza Rajabpour Niknam,
Volume 25, Issue 76 (3-2025)
Abstract

In arid and semi-arid regions, groundwater is more important for humans and ecosystems than surface water. Land subsidence is caused by the pumping and uncontrolled use of groundwater in an area. When the extracted quantities are not replenished by rainfall, it leads to damages such as road failures, destruction of residential areas, railways, as well as water and gas pipelines. The Yazd-Ardakan plain is one of the main plains in Yazd province, hosting 75% of the province's population density and most industrial centers. Additionally, this plain has been subjected to a ban by the Ministry of Energy due to a sharp decline in groundwater levels. This study aimed to quantify and compare the extent of subsidence using four Synthetic Aperture Radar (SAR) images of the C-band from the Sentinel-1 satellite and the radar differential interferometry method from 2017 to 2021. The maximum subsidence recorded in 2017 was 13 cm, while in 2020 and 2021, it decreased to 9 cm, primarily concentrated in the Shamsi region between Meybod and Ardakan. Furthermore, to validate the satellite-derived results, they were compared with those obtained through accurate leveling methods conducted by the Iran National Cartographic Center. The study revealed that Sentinel images exhibit a strong capability to estimate the extent of subsidence. Considering the examination of groundwater consumption and depletion statistics in recent years, potential reasons for the reduction in subsidence in the study area could be attributed to management measures such as water transfer to this basin, alterations in agricultural practices, and a decrease in groundwater depletion compared to previous years in this region.

Majid Goodarzi, Ali Ashkboos, Behnam Mohammadi,
Volume 25, Issue 77 (6-2025)
Abstract

The intermediate development approach posits that vacant lands and the deteriorating structures within urban areas should be prioritized for development rather than expanding into the periphery of cities currently under construction. Acknowledging this significance, the present article endeavors to identify and prioritize the barriers to intermediate development in Zabol, utilizing Chang's technique. This applied study employs a descriptive-analytical research methodology, incorporating both library research and survey research (field studies) for data collection. The statistical population for identifying the obstacles to intermediate development comprised all residents of Zabol city in 2023. The sample size was calculated to be 384 using Cochran's formula, and a purposive sampling method was employed to gather the data. The reliability of the research instrument was assessed using Cronbach's alpha coefficient, yielding a value of 0.80. The identification of obstacles was conducted through a sample t-test in SPSS, followed by the prioritization of the identified barriers. Data were collected from existing information about the city and through a questionnaire distributed to 20 relevant experts. Subsequently, the data were analyzed using Chang's technique (AHP-FUZZY). The findings indicated that the most significant obstacle to the implementation of the intermediate development plan for Zabol city is the economic index, which received a final weight of 483.

Toba Alizadeheh, Majid Rezaie Banafsh, Gholamreza Goodarzi, Hashem Rostamzadeh,
Volume 25, Issue 78 (9-2025)
Abstract

Dust is a phenomenon that has many environmental effects in various parts of human life, including: agriculture, economy, health and so on. The purpose of this study is to investigate and predict the dust phenomenon in Kermanshah. Meteorological data with a resolution of 3 hours in the statistical period (2020-2000) of Kermanshah station was obtained from the Meteorological Organization. First, the dust data were normalized and then using ANN neural network models to predict dust concentration and ANFIS adaptive neural network to debug and predict the time series of dust occurrence in MATLAB software were debugged and predicted. Findings showed that the maximum predicted dust concentration related to the minimum fenugreek point with the highest Pearson correlation with dust was estimated to be 3451.23 μg / m3. Also, the results of time series prediction using ANFIS model showed that the linear bell membership function with grade 3, in the training and testing stages, has the most desirable input function among other membership functions. According to the forecasting models, the highest probability of maximum dust occurrence in the next 20 years in Kermanshah was 94%.

Page 1 from 1     

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)