جستجو در مقالات منتشر شده


۱ نتیجه برای مهرآبادی

سمیه مهرآبادی،
دوره ۲۱، شماره ۶۰ - ( ۱-۱۴۰۰ )
چکیده

روش‌های کلاسیک یا روشهای سخت بر دقیق بودن محاسبات، پایه­گذاری شده­اند درحالیکه دنیای واقعی بر نادقیق بودن مرزها و عدم قطعیت­ها استوار است که بیشتر با روش‌های محاسبات نرم مطابقت دارد، که این روش­ها نیز به تنهایی نقاط ضعف و قوتی دارند و برای رفع آنها تئوری پیوند­زنی مطرح شد که با عنوان سیستم­های ترکیبی هوشمند شناخته می­شوند. در این تئوری دو یا چند روش هوشمند با یکدیگر ترکیب می­شود تا کاستی­ها و نواقص روش­های منفرد رفع یا تعدیل گردد. در این مطالعه، تخریب جنگل با استفاده از شبکه عصبی پرسپترون و روش ترکیبی عصبی-فازی مدل­سازی شده­است. برای اینکار از تصاویر سنسور TM ماهواره لندست ۵ سال ۱۹۹۹ و سنسور OLI متعلق به لندست ۸ برای سال ۲۰۱۷ استفاده شد. از مناطق جنگلی تخریب شده و جنگل بدون تخریب در ۲۰۰ نقطه نمونه­برداری شد. سپس ۷ فاکتور تخریب جنگل شامل: فاصله ازعوارضی همچون (شهر-رودخانه-روستا-دریا-جاده)، ارتفاع و شیب برای ۲۰۰ نقطه محاسبه شد. برای ارزیابی عملکرد مدل­ها از میانگین مربعات خطای استفاده شد که برای شبکه پرسپترون با سه الگوریتمLevenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient  به ترتیب ۵۰,۰۵۳، ۴۰,۰۷۰ و ۸۰,۰۹۰ بدست­آمد. MSE برای مدل عصبی-فازی با الگوریتم بهینه­سازی و روش ترکیبی به ترتیب ۰۰,۰۱۹ و ۰.۰۱۰۲ محاسبه شد. تحلیل نتایج حاکی از عملکرد مطلوب مدل نروفازی در کاهش خطا و افزایش تعمیم­پذیری می­باشد. مدل نروفازی با تکیه بر قاعده عدم قطعیت شرایطی را ایجاد کرده که به واقعیت شباهت بیشتری داشته و نسبت به مدل پرسپترون در انتخاب داده­ی مناسب موفق­تر بوده­است.
 


صفحه ۱ از ۱     

کلیه حقوق این وبگاه متعلق به تحقیقات کاربردی علوم جغرافیایی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Applied Researches in Geographical Sciences

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)