1. اژدری، علی؛ حیدریان پیمان؛ فتحبار، سمیرا؛ صالحی، حسین و فولادی، علی (1396). اولویتهای کانونهای تولید گرد و غبار در استان خوزستان. سازمان زمینشناسی و اکتشاف معدنی استان خوزستان.
2. شیرازی، میترا؛ اخوان محمد اخوان؛ متینفر، حمیدرضا و نخکش، منصور(1399). مقایسه روشهای کاهش مقیاس تصویر MODIS و OLI برای تشخیص گرد و غبار صنعتی، مجله تحقیقات مرتع و بیابان ایران، شماره 26 (3). [
DOI:10.22092/ijrdr.2019.119996]
3. کابلیزاده، مصطفی؛ رنگزن، کاظم و محمدی، شاهین (1397). کاربرد تلفیق تصاویر ماهواره ای لندست-8 و سنتینل-2 در پایش محیطی، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (سال نهم/ شماره سوم).
4. نخعینژاد فرد، سارا؛ غلامی، حمید؛ اکبری، داود؛ تلفر، مت و رضایی، مرضیه(1398). ارزیابی استفاده از الگوریتمهای مختلف ادغام تصویر در تهبه نقشه شاخصهای گیاهی. فصلنامه علمی ـ پژوهشی اطلاعات جغرافیایی سپهر، 28(112)، 199-217. . [
DOI:10.22131/sepehr.2020.38616]
5. Acerbi-Junior, F., Clevers, J., & Schaepman, M. (2006). The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. International Journal of Applied Earth Observation and Geoinformation, 8(4): 278-288.
https://doi.org/10.1016/j.jag.2006.01.001 [
DOI:10.1016/j.jag.2006.01.001.]
6. Al-Wassai, F., Kalyankar, N.V., & Al-Zuky, A A. (2011). Arithmetic and frequency filtering methods of pixel-based image fusion techniques. arXiv preprint arXiv:1107.3348.
7. Boyte, S.P., Wylie, B.K., Rigge, M.B. & Dahal, D. (2017). "Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA", GIScience & Remote Sensing, 1-24. [
DOI:10.1080/15481603.2017.1382065]
8. Chen, Sh., Zhang, L., Hu, X., Meng, Q., Qian, J. & Gao, J. (2023). "A Spatiotemporal Fusion Model of Land Surface Temperature Based on Pixel Long Time-Series Regression: Expanding Inputs for Efficient Generation of Robust Fused Results" Remote Sensing 15, no. 21: 5211.
https://doi.org/10.3390/rs15215211 [
DOI:10.3390/rs15215211.]
9. Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., & Yang. (2017). Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3): 47-60. [
DOI:10.1109/MGRS.2015.2434351]
10. Lau, W., King, B.A., & Li, Z. (2000). The influence of image classification by fusion of spatially oriented images. International Archieves of Photogrammetry and Remote Sensing, 33(B7/2; PART 7): 752-759.
11. Moller, M., Gerstmann, h., Gao, F., Dahms, T.C., & Forster, M. (2017). Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk. CATENA, 150: 192-205. https://doi 10.1016/j.catena.2016.11.016 [
DOI:10.1016/j.catena.2016.11.016]
12. Moltó, E. (2022). "Fusion of Different Image Sources for Improved Monitoring of Agricultural Plots" Sensors 22, no. 17: 6642.
https://doi.org/10.3390/s22176642 [
DOI:10.3390/s22176642.] [
PMID] [
]
13. Niazi, Y., Moosavi, V., Talebi, A., Mokhtari, M.H., & Shamsi, S.R.F. (2015). A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sensing of Environment, 169, pp.243-254.
https://doi.org/10.1016/j.rse.2015.08.015 [
DOI:10/.1016/j.rse.2015.08.015.]
14. Olsoy, P., Mitchell, J., Glenn, N., Flores, A. (2017). Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain. Remote Sensing, 9(10): 981 [
DOI:10.3390/rs9100981]
15. Pohl, C., & Van Genderen, J. (2016). Remote sensing image fusion: A practical guide. 1st ed. Crc Press, Boca Raton, 288. [
DOI:10.1201/9781315370101]
16. Pushparaj, J., & Hegde, A.V. (2017). Evaluation of pan-sharpening methods for spatial and spectral quality. Applied Geomatics, 9(1): 1-12. [
DOI:10.1201/9781315370101]
17. Wang, Q., Blackburn, G.A., Onojeghuo, A.O., Dash, J., Zhou, L., Zhang, Y., & Atkinson, P.M. (2017). Fusion of Landsat 8 OLI and Sentinel-2 MSI data. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3885-3899. [
DOI:10.1109/TGRS.2017.2683444]
18. Xu, S., & Ehlers, M. (2017). Hyperspectral image sharpening based on Ehlers fusion.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W7: 941-947. [
DOI:10.1109/TGRS.2017.2683444]
19. Zhang, K., Kimball, J. S., & Running, S.W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834-853. http://dx.doi.org/10.1002/wat2.1168 [
DOI:10.1002/wat2.1168]
20. Zhao, J., Huang, L., Yang, H., Zhang, D., Wu, Z. & Guo, J. (2016). "Fusion and assessment of high-resolution WorldView-3 satellite imagery using NNDiffuse and Brovey algorithms. In Fusion and assessment of high-resolution WorldView-3 satellite imagery using NNDiffuse and Brovey algorithms", IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2606-2609. [
DOI:10.1109/IGARSS.2016.7729673] [
PMID] [
]
21. Zhou, J., Zhan, W.D., Hu & Zhao, X. (2011). Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data. Chinese Geographical Science, 20: 123-131.
https://doi.org/10.1007/s11769-010-0123-z [
DOI:1010.1007/s11769-010-0123-z]
22. Zhou, J., Chen, J., Chen, X., Zhu, X., Qiu, Y., Song, H., Rao, Y., Zhang, C., Cao, X., & Cui, X. (2021). Sensitivity of six typical spatiotemporal fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series reconstruction. Remote Sensing of Environment, 252, Article 112130. [
DOI:10.1016/j.rse.2020.112130]