Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

karampour M, khamoshian sahneh Y, ebrahimi Z, heidari H. (2025). Correlation between NAO index and the occurrence of ARs in Iran. jgs. 25(78), doi:10.61186/jgs.25.78.5
URL: http://jgs.khu.ac.ir/article-1-4140-en.html
1- University of Lorestan, University of Lorestan , mostafa_karampoor@yahoo.com
2- University of Lorestan, University of Lorestan
3- msc of climatology, University of golestan, University of golestan
Abstract:   (3776 Views)
In recent years, much attention has been allocated to the study of atmospheric rivers because atmospheric rivers are massive carriers of moisture from remote areas. In this study, atmospheric rivers were studied for Iran and the neighboring countries in terms of their source of formation and their relationship and correlation with the NAO index. To study them the 1994 to 2019 data of various climatic elements such as Vwind, Function wind, NAO,, wind Shum, Meridonal wind were used. The results showed that during the study period, the ARs direction became more southerly, and jet streams played a major role in producing and determining the direction of river flow. Jetstream performance can also be used to determine the potential of an area in identifying atmospheric rivers. The highest correlation of the Transatlantic Transplant Index is with the tidal currents at the levels of 500 and 400. If the pressure centers are located in the southern part of the atmospheric rivers and the jet streams reach the eastern regions about 60 degrees, the length of the atmospheric rivers will reach more than 12,000 kilometers and  affect the eastern regions of Iran to Pakistan, Bangladesh and Afghanistan.
     
Type of Study: Research | Subject: climatology

References
1. Akbary, M., Salimi, S., Hosseini, SA., and Hosseini M., (2019), Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region, Int J Climatol,1-11. https://doi. org/10.1002/joc.6052. [DOI:10.1002/joc.6052]
2. Baggett, C., Sukyoung Lee, S., and Feldstein, S., (2016), An Investigation of the Presence of Atmospheric Rivers over the North Pacific during Planetary-Scale Wave Life Cycles and Their Role in Arctic Warming, Journal of the Atmospheric Sciences,73(11):4329-4347. https://doi.org/10.1175/JAS-D-16-0033.1 [DOI:10.1175/JAS-D-16-0033.1.]
3. Champion, A.J., Allan, R.P., and Lavers D.A., (2015), Atmospheric rivers do not explain UK summer extreme rainfall, Geophysical Research: Atmospheres, 120: 6731-6741 . [DOI:10.1002/2014JD022863]
4. Debbage, N., Miller, P., Poore, S., Morano, K., Mote, T., and Sheppard, JM., (2017), A climatology of atmospheric river interactions with the southeastern United States coastline, Climatol,37:4077-4091. [DOI:10.1002/joc.5000]
5. Dettinger, M., (2013), Atmospheric Rivers as Drought Busters on the U.S. West Coast, Hydrometeor, 14, 1721-1732. https://doi.org/10.1175/JHM-D-13-02.1 [DOI:10.1175/JHM-D-13-02.1.]
6. Gimeno, L., Dominguez, F., Nieto, R., Trigo, R. M., Drumond, A., Reason, C., and Marengo, J., (2016), Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Env. Resour, 41, 117-141. https://doi.org/10.1146/annurev-environ-110615-085558 [DOI:10.1146/annurev-environ-110615-085558.]
7. Kerr, R.A., (2006), Rivers in the sky are flooding the world with tropical waters,Science, 313(5786), 435. https://doi.org/10.1126/science.313.5786.435 [DOI:10.1126/science.313.5786.435.] [PMID]
8. Lavers, D.A., and Villarini G., (2015), The contribution of atmospheric rivers to precipitation in Europe and the United States. Hydrology, 522: 382- 390. [DOI:10.1016/j.jhydrol.2014.12.010]
9. Lavers, D.A., Allan, R., Villarini, G., Lloyd-Hughes, B., Brayshaw D., and Wade A., (2013), Future changes in atmospheric rivers and their implications for winter flooding in Britain, Environmental Research Letters, 8:1-8. [DOI:10.1088/1748-9326/8/3/034010]
10. Lagrange, J.-L.,( 1868), Mémoire sur la théorie du mouvement des fluides (in: Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, année 1781. Oevres de Lagrange, Tome IV, pp. 695-748.
11. National Research Council., ( 1991), Opportunities in Hydrologic Sciences, National Academy Press. 348 p.
12. National Research Council., (1999), The GEWEX Global Water Vapor Project (GVaP), USA.
13. Neiman, P.J., Ralph, F.M.,, and Wick, G.A., (2008) ., Meteorological characteristics and overland precipitation impacts of ARS affecting the west coast of North America based on eight years of SSM/I satellite observations, Journal of Hydrometeorology, 9(1), 22-47. https://doi.org/10.1175/2007JHM855.1 [DOI:10.1175/2007JHM855.1.]
14. Newell, R.E., Newell, N.E., Zhu, Y., and Scott, C., (1992), Tropospheric rivers? a pilot study, Geophysical Research Letters, 19(24), 2401-2404. https://doi.org/10.1029/92GL02916 [DOI:10.1029/92GL02916.]
15. Ralph, F.M., Coleman, T., Neiman, P.J., Zamora R.J., and Dettinger M.D., (2013), Observed impacts of duration and seasonality of atmosphericriver landfalls on soilmoisture and runoff in coastal northern California, Hydrometeorology, 14: 443-459 . [DOI:10.1175/JHM-D-12-076.1]
16. Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander, J., (2018), Defining atmospheric river: How the Glossary of Meteorology helped resolve a debate, Bull. Amer. Meteor. Soc, 99, 837-839, [DOI:10.1175/BAMS-D-17-0157.1]
17. Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M. D., Reynolds, M., Schick, and C. Smallcomb, L. J., (2019), A Scale to Characterize the Strength and Impacts of Atmospheric Rivers, Bull. Amer. Meteor, Soc, 100, 269-289, https://doi.org/10.1175/BAMS-D-18-0023.1 [DOI:10.1175/BAMS-D-18-0023.1.]
18. Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B., (2006), Flooding on California's Russian River: role of atmospheric rivers, Geophysical Research Letters, 33(13), L13801. https://doi.org/10.1029/2006GL026689 [DOI:10.1029/2006GL026689.]
19. Ramos, AM., Trigo, RM., Tomé, R., and Liberato MLR., (2018), Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands, Atmosphere, 9(8):325. [DOI:10.3390/atmos9080325]
20. Rutz, J J., Steenburgh, W J., Ralph, F M., (2014), Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States, Monthly Weather Review, 142(2):905-921.DOI: 10.1175/MWR-D-13-00168.1. [DOI:10.1175/MWR-D-13-00168.1]
21. Ryoo, J M., Duane, E., Waliser, D E., Sun Wong, S., Eric, J., Fetzer, E J., and Fung, I., (2015), Classification of atmospheric river events on the U.S. West Coast using a trajectory model, JGR Atmospheres, 120(8): 3007-3028. https://doi.org/10.1002/2014JD022023 [DOI:10.1002/2014JD022023.]
22. Salimi, S., Salighe, M., (2016), The effects of atmospheric rivers on Iran climate, Physical Geography Research Quarterly, 48(2), 247-264. Doi: 10.22059/JPHGR.2016.59366.
23. Smith, B L., Yuter, S E., (2010), Water Vapor Fluxes and Orographic Precipitation over Northern California Associated with a Landfalling Atmospheric River, Monthly Weather Review, 138(1): 74-100. https://doi.org/10.1175/2009MWR2939.1 [DOI:10.1175/2009MWR2939.1.]
24. Stohl, A., Forster, C., and Sodermann, H., (2008), Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-a tale of hurricanes and an atmospheric river, Geophysical Research, 113, 1-13. https://doi.org/10.1029/2007JD009006 [DOI:10.1029/2007JD009006.]
25. Stokes, G.G., (1842), On the steady motion of incompressible fluids, Transactions of the Cambridge Philosophical Society, 7: 439-453, Bibcode:1848TCaPS...7..439S Stokes, G.G., (1880), Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 1-16
26. White, A.B., Gottas, D.J., Henkel, A.F., Neiman, P.J., Ralph, F.M., and Gutman, S.I., (2010), Developing a performance measure for snow-level forecasts. Journal of Hydrometeorology, 11, 739-753. [DOI:10.1175/2009JHM1181.1]
27. Zhu, Y., and Newell, R.E., (1994), ARS and bombs, Geophysical Research Letters, 21(18), 1999-2002. https://doi.org/10.1029/94GL01710 [DOI:10.1029/94GL01710.]
28. Zhu, Y., and Newell, R.E., (1998), A proposed algorithm for moisture fluxes from atmospheric rivers, Monthly Weather Review, 126(3), 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 [DOI:10.1175/1520-0493(1998)1262.0.CO;2]
29. Akbary, M., Salimi, S., Hosseini, SA., and Hosseini M., (2019), Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region, Int J Climatol,1-11. https://doi. org/10.1002/joc.6052. [DOI:10.1002/joc.6052]
30. Baggett, C., Sukyoung Lee, S., and Feldstein, S., (2016), An Investigation of the Presence of Atmospheric Rivers over the North Pacific during Planetary-Scale Wave Life Cycles and Their Role in Arctic Warming, Journal of the Atmospheric Sciences,73(11):4329-4347. https://doi.org/10.1175/JAS-D-16-0033.1 [DOI:10.1175/JAS-D-16-0033.1.]
31. Champion, A.J., Allan, R.P., and Lavers D.A., (2015), Atmospheric rivers do not explain UK summer extreme rainfall, Geophysical Research: Atmospheres, 120: 6731-6741 . [DOI:10.1002/2014JD022863]
32. Debbage, N., Miller, P., Poore, S., Morano, K., Mote, T., and Sheppard, JM., (2017), A climatology of atmospheric river interactions with the southeastern United States coastline, Climatol,37:4077-4091. [DOI:10.1002/joc.5000]
33. Dettinger, M., (2013), Atmospheric Rivers as Drought Busters on the U.S. West Coast, Hydrometeor, 14, 1721-1732. https://doi.org/10.1175/JHM-D-13-02.1 [DOI:10.1175/JHM-D-13-02.1.]
34. Gimeno, L., Dominguez, F., Nieto, R., Trigo, R. M., Drumond, A., Reason, C., and Marengo, J., (2016), Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Env. Resour, 41, 117-141. https://doi.org/10.1146/annurev-environ-110615-085558 [DOI:10.1146/annurev-environ-110615-085558.]
35. Kerr, R.A., (2006), Rivers in the sky are flooding the world with tropical waters,Science, 313(5786), 435. https://doi.org/10.1126/science.313.5786.435 [DOI:10.1126/science.313.5786.435.] [PMID]
36. Lavers, D.A., and Villarini G., (2015), The contribution of atmospheric rivers to precipitation in Europe and the United States. Hydrology, 522: 382- 390. [DOI:10.1016/j.jhydrol.2014.12.010]
37. Lavers, D.A., Allan, R., Villarini, G., Lloyd-Hughes, B., Brayshaw D., and Wade A., (2013), Future changes in atmospheric rivers and their implications for winter flooding in Britain, Environmental Research Letters, 8:1-8. [DOI:10.1088/1748-9326/8/3/034010]
38. Lagrange, J.-L.,( 1868), Mémoire sur la théorie du mouvement des fluides (in: Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, année 1781. Oevres de Lagrange, Tome IV, pp. 695-748.
39. National Research Council., ( 1991), Opportunities in Hydrologic Sciences, National Academy Press. 348 p.
40. National Research Council., (1999), The GEWEX Global Water Vapor Project (GVaP), USA.
41. Neiman, P.J., Ralph, F.M.,, and Wick, G.A., (2008) ., Meteorological characteristics and overland precipitation impacts of ARS affecting the west coast of North America based on eight years of SSM/I satellite observations, Journal of Hydrometeorology, 9(1), 22-47. https://doi.org/10.1175/2007JHM855.1 [DOI:10.1175/2007JHM855.1.]
42. Newell, R.E., Newell, N.E., Zhu, Y., and Scott, C., (1992), Tropospheric rivers? a pilot study, Geophysical Research Letters, 19(24), 2401-2404. https://doi.org/10.1029/92GL02916 [DOI:10.1029/92GL02916.]
43. Ralph, F.M., Coleman, T., Neiman, P.J., Zamora R.J., and Dettinger M.D., (2013), Observed impacts of duration and seasonality of atmosphericriver landfalls on soilmoisture and runoff in coastal northern California, Hydrometeorology, 14: 443-459 . [DOI:10.1175/JHM-D-12-076.1]
44. Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander, J., (2018), Defining atmospheric river: How the Glossary of Meteorology helped resolve a debate, Bull. Amer. Meteor. Soc, 99, 837-839, [DOI:10.1175/BAMS-D-17-0157.1]
45. Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M. D., Reynolds, M., Schick, and C. Smallcomb, L. J., (2019), A Scale to Characterize the Strength and Impacts of Atmospheric Rivers, Bull. Amer. Meteor, Soc, 100, 269-289, https://doi.org/10.1175/BAMS-D-18-0023.1 [DOI:10.1175/BAMS-D-18-0023.1.]
46. Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B., (2006), Flooding on California's Russian River: role of atmospheric rivers, Geophysical Research Letters, 33(13), L13801. https://doi.org/10.1029/2006GL026689 [DOI:10.1029/2006GL026689.]
47. Ramos, AM., Trigo, RM., Tomé, R., and Liberato MLR., (2018), Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands, Atmosphere, 9(8):325. [DOI:10.3390/atmos9080325]
48. Rutz, J J., Steenburgh, W J., Ralph, F M., (2014), Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States, Monthly Weather Review, 142(2):905-921.DOI: 10.1175/MWR-D-13-00168.1. [DOI:10.1175/MWR-D-13-00168.1]
49. Ryoo, J M., Duane, E., Waliser, D E., Sun Wong, S., Eric, J., Fetzer, E J., and Fung, I., (2015), Classification of atmospheric river events on the U.S. West Coast using a trajectory model, JGR Atmospheres, 120(8): 3007-3028. https://doi.org/10.1002/2014JD022023 [DOI:10.1002/2014JD022023.]
50. Salimi, S., Salighe, M., (2016), The effects of atmospheric rivers on Iran climate, Physical Geography Research Quarterly, 48(2), 247-264. Doi: 10.22059/JPHGR.2016.59366.
51. Smith, B L., Yuter, S E., (2010), Water Vapor Fluxes and Orographic Precipitation over Northern California Associated with a Landfalling Atmospheric River, Monthly Weather Review, 138(1): 74-100. https://doi.org/10.1175/2009MWR2939.1 [DOI:10.1175/2009MWR2939.1.]
52. Stohl, A., Forster, C., and Sodermann, H., (2008), Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-a tale of hurricanes and an atmospheric river, Geophysical Research, 113, 1-13. https://doi.org/10.1029/2007JD009006 [DOI:10.1029/2007JD009006.]
53. Stokes, G.G., (1842), On the steady motion of incompressible fluids, Transactions of the Cambridge Philosophical Society, 7: 439-453, Bibcode:1848TCaPS...7..439S Stokes, G.G., (1880), Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 1-16
54. White, A.B., Gottas, D.J., Henkel, A.F., Neiman, P.J., Ralph, F.M., and Gutman, S.I., (2010), Developing a performance measure for snow-level forecasts. Journal of Hydrometeorology, 11, 739-753. [DOI:10.1175/2009JHM1181.1]
55. Zhu, Y., and Newell, R.E., (1994), ARS and bombs, Geophysical Research Letters, 21(18), 1999-2002. https://doi.org/10.1029/94GL01710 [DOI:10.1029/94GL01710.]
56. Zhu, Y., and Newell, R.E., (1998), A proposed algorithm for moisture fluxes from atmospheric rivers, Monthly Weather Review, 126(3), 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 [DOI:10.1175/1520-0493(1998)1262.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)