Volume 25, Issue 77 (6-2025)                   jgs 2025, 25(77): 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Badamfirooz J, sharifi L. (2025). Assessment of water and soil resources in the Gando Protected Area. jgs. 25(77), doi:10.61186/jgs.25.77.7
URL: http://jgs.khu.ac.ir/article-1-4071-en.html
1- , Institute of Environment and Sustainable Development, Department of Environment, Tehran, Iran, Institute of Environment and Sustainable Development, west side of Pardisan Nature Park, Shahid Hakim Highway, Tehran , badam@rcesd.ac.ir
2- PhD in Agricultural Climatology, Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran, Faculty of Geography, University of Tehran, Tehran, Iran
Abstract:   (5799 Views)
By evaluating the functions and ecosystem services of protected areas, it is possible to help planners and decision makers of land management and sustainable development in the region and the country. The present study specifically assesses water and soil resources in the Gando Protected Area and the economic valuation of these services. In order to model the ecosystem services of water balance, soil protection and water quality, a hydrological model -WWPSS- based on RS data was used. The simulation was performed using a series of one-degree square meters (one hectare) on a monthly scale. In order to evaluate the economy, the Invest model and the alternative cost method were used. The results showed that the total water produced in this region is 401,205,344 m3 per year. Also, the minimum, maximum and average water budget of all three are negative and are equal to -1492.76, -38.04 and -639.24 mm per year, respectively, which indicates the lack of rainfall and the intensity of evapotranspiration in this region. The average potential of surface water pollution is 4.5% and this area prevents erosion of 2 tons per hectare per year. The real economic value of water production and soil protection in 2019 with inflation reform of 20.18%, 67.54 and 2729.65 billion rials, respectively, is estimated. Three scenarios with discount rates (combined) of 8, 12 and 15% in 5, 10, 15- and 30-year periods were used to determine the economic value of the functions of these resources. The results showed that for example; With a discount rate of 15% and over a period of 30 years, the economic value of water production and soil protection will reach 4471.82 and 180.730 billion rials, respectively. totally, the economic value of water production and soil protection is 0.35 and 14.17% of the total value of the region.
     
Type of Study: Applicable | Subject: Geography and Rural Planning

References
1. حسینی ساره؛ اولادی جعفر؛ امیرنژاد حمید. (1394). اولویت بندی معیارها و شاخص های اکولوژیکی, اقتصادی و اجتماعی پارک‌های ملی با استفاده از تکنیک‌های تصمیم گیری چند معیاره (SAW ،Entropy و TOPSIS)، پژوهش های علوم و فناوری چوب و جنگل، 22(4)، 1-27.
2. خلیلی افسانه؛ متاجی اسداله؛ ثاقب طالبی خسرو؛ حجتی سیدمحمد. (1399). تغییرات مقدار چگالی، زی توده، ذخیره ی کربن و نیتروژن چوب خشک دارهای راش و ممرز برحسب درجات مختلف پوسیدگی در جنگل خیرود نوشهر، مجله جنگل ایران، 12(4): 575-557.
3. سراقی عیسی؛ ملکی حسین؛ ابوالفتحی داریوش. (1387). نقش جاذبه های اکوتوریستی در توسعه گردشگری نهاوند با تاکید بر مدل SWOT ، نشریه تحقیقات کاربردی علوم جغرافیایی، ۸(۶):۱۳۳-۱۷۰.
4. مرکز آمار ایران. (1395). سالنامه‌های آماری ایران (گزارش 35)، تهران: مرکز آمار ایران.
5. معتمدی راد محمد؛ گلی مختاری لیلا؛ بهرامی شهرام؛ زنگنه اسدی محمد علی. (1398). ارزیابی کیفیت منابع آبی از نظر شرب، کشاورزی و صنعت در آبخوان کارستی روئین اسفراین استان خراسان شمالی، نشریه تحقیقات کاربردی علوم جغرافیایی، ۲۱ (۶۲): ۷۳-۹۳.
6. Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., (1997), The value of the world's ecosystem services and natural capital. Nature, 39 (387): 253-260. [DOI:10.1038/387253a0]
7. Fu, B., (1981), On the calculation of the evaporation from land surface, Scientific Atmosphere, 1(3): 23-31.
8. Koppen, V., (2010), Multiple-use water services in Madagascar: climbing the water ladder, Waterlines, 29 (1): 21-57. [DOI:10.3362/1756-3488.2010.003]
9. Laura Onofri, A., Paulo A.L.D., Nunes, A., (2020), Economic valuation for policy support in the context of ecosystem-based adaptation to climate change: An indicator, integrated based approach, Heliyon, 6 (04650). [DOI:10.1016/j.heliyon.2020.e04650] [PMID] []
10. Mahmoud, M.T., Hamouda, M.A., Mohamed, M.M., (2019), Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates, Atmosphere Resource, 219, 200-212. [DOI:10.1016/j.atmosres.2018.12.029]
11. Maskey, N., Wallman., P., (2008), Investing in Ecosystem Services: Opportunities and Challenges for Shivapuri National Park, Nepal, Studies and Sustainability Science, 170 (211): 28-49.
12. McDonnell, R.A., (2014), Circulations and transformations of energy and water in Abu Dhabi's hydrosocial cycle, Geoforum Complete,105 (57): 225-233. [DOI:10.1016/j.geoforum.2013.11.009]
13. Mishkin, F., (2009), Globalization, Macroeconomic Performance, & Monetary Policy, Money, Credit & Banking, Studies and Sustainability Science, 41(1): 187-196 [DOI:10.1111/j.1538-4616.2008.00204.x]
14. Mulligan, M., (2013), WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally, Hydrology Research, 44(5): 748-769. [DOI:10.2166/nh.2012.217]
15. Mulligan, M., Burke, S. M., (2005), FIESTA: Fog interception for the enhancement of streamflow in tropical areas, environmental management, 79 (91).
16. Mulligan, M., Rubiano, J., Hyman, G., White, D., Garcia, J., Saravia, M., & Leonardo Saenz-Cruz, L., (2010), The Andes basins: biophysical and developmental diversity in a climate of change, Water International isssues, 35(5): 472-492. [DOI:10.1080/02508060.2010.516330]
17. Proskuryakova, L.N., Saritas, O., Sivaev, S., (2019), Global water trends and future scenarios for sustainable development: the case of Russia, water management, 170 (14): 867-879. [DOI:10.1016/j.jclepro.2017.09.120]
18. Sussman, N., Zohar, O., (2018), Has inflation targeting become less credible? BIS Working Papers, no 729.
19. Zhang, M., Lin, W., Bretherton, C. S., Hack, J. J., & Rasch, P. J., (2004), A modified formulation offractional stratiform condensation rate in the NCAR community atmospheric model CAM2, Geophysics Resource,108 (1). [DOI:10.1029/2002JD002523]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.