مغزه‌های یخی
رمزگشای رازهای اقلیم گذشته

زهراء صمیمی، دانشجوی دکترای اقلیم‌شناسی، دانشگاه تهران
سید جواد زاده، کارشناس ارشد اقلیم‌شناسی

چکیده:
درک سیستم زمین و پیوسته‌ای آن، یکی از دغدغه‌های چالش‌های فکری عمده در مقابل دانشمندان است. قسمت‌هایی از اقیمی، مکان‌هایی که به کننده و واکنش‌های آنها، به نسبت اهمیت‌های نسبی پیچیده بوده و کمتر درک می‌شوند. از انجایی که گزارش‌ها ناشی از قراردادهای اقیمی در سال‌های اخیر تاریخ زمین، ممکن است متأثر از دخالت‌ها و فعالیت‌های انسانی در طبیعت بوده است. گزارش‌های مربوط به اقلیم در گذشته برای پیش‌بینی درک علمی سیستم‌های اقیمی‌ها محلی، منطقه‌ای و جهانی حائز اهمیت خواهند شد. در این زمینه، مغزه‌های یخی بیشترین توان تجزیه و تحلیل و بررسی گذشته را فراهم می‌کند که در این مقاله به تجزیه و تحلیل آن به عنوان راهنمای جهت نتیجه‌گیری از اقلیم در گذشته برداخته شده است.

واژه‌کلیدی: سیستم زمین، اقلیم، مغزه یخی، اقلیم گذشته، تغییر اقلیم

مقدمه
در طی چند دهه گذشته، محیط‌های زمین تأثیرکردنده باترکیپ پیچیده مشخص شده است. خورشیدی و تمامی قسمت‌های زمین (اقیانوس‌ها، برف و توده‌های خشکی، برف و توده‌های یخی، تمامی حیات و درون زمین) قسمت‌هایی از این سیستم هستند. تغییر در هر قسمت دنیا تأثیر

Downloaded from igj.khu.ac.ir at 15:16 +0430 on Sunday July 25th 2021
بخش‌هایی دیگری گذشته و در نهایت باعث تغییر اقلیمی می‌گردد. در واقع تغییرات اقلیمی یک فرآیند متوالی است [۹] که مهم‌ترین آن‌ها با زمان و طول مقياسی که در آن اتفاق می‌افتد، توصیف می‌شوند [۱۵] با آنالیز آرشیوی اقلیمی دوران گذشته می‌توان سه نوع تغییرات را تشخیص داد [۲۳]:

۱- افت و خیزهای طبیعی حول و حوش یک وضعیت مانند هولوسن (ENSO) [۲۲] تغییراتی از این نوع مانند نوسان جنوبی بیانن اطلس شمالي (NAO) [۲۷] با زمان خاص و طول مقياسی به ترتیب با ۱۵-۳ سال و ۷-۱۰ متر است.

۲- تسلیسلی از تغییرات ناگهانی در طی آن‌ها مانند دانسگارد- اوسچر (D/O) [۱۶]، حوادث بانانی (V) [۵] و پایین عصرهای بیشتر [۶] و زمان خاص و طول مقياسی به ترتیب با ۱۰۰-۳ سال و ۰-۱۰ متر برای جهان که اختلاف عمده آن با نوع اول، دامنه تغییرات بسیار بزرگتر آنها می‌باشد.

۳- تغییرات آرام که احتمالاً بوسیله تغییر در پارامترهای مدار زمین ایجاد می‌شود. تنوری میلانکوونیچ یکی از برندگان فکری و استنباطی دانشمندان از عصریخی کوانتنری است [۱۰] گرچه سوالات مهمی هنوز بدون جواب مانده‌اند. مقياس‌های زمانی خاص آن ۲۰۰۰، ۳۰۰۰، ۴۰۸۰ و ۶۰۰۰ سال بوده و تغییرات در سطح جهانی می‌باشد.

۱ - Fluctuations
۲ - El Nino Southern Oscillation (ENSO)
۳ - North Atlantic oscillation (NAO)
۴ - Dansgaard/oeschger
۵ - Heinrich Events
بدین ترتیب محتوای طبیعی در گذشته در سطوح مختلف (محیطی، منطقه‌ای، جهانی) تغییر داشته و در آینده نیز تغییر می‌کند. جنین تغییرات محیطی از آرام و تدریجی گرفته تا سریع و تکان‌دهنده می‌تواند اثرات منفی بر روی بیماری‌ها، نواحی گیاهان بگذارد. تغییرات در آینده ندیکت می‌تواند در اثر تغییرات محیطی و بیماری‌ها؛ اقلیم (که بخش از یکدیگر می‌سازند گذشته باعث توالی دوره‌های سرد و گرم، دوره‌های بخش‌گذاری (به‌طور مثال) شده است و تغییرات ناشی از فعالیت‌های انسان در ترکیبات جوی (بیوزه در گازهای گلخانهای گیاه‌های دی اکسیدکربن (CO2)، متان (CH4) و ترکیبات نیتروژن (NO2) و گیاه‌ها هر دوره پا به اثر می‌شود. در صورتی که درخواهیم اثرات ناسالم جنین تغییراتی را از طریق برنامه‌ریزی و سیاست‌های طولانی مدت کاهش دهیم، تغییرات محیطی موردانتظار در طی چند دهه (با نظر قرن) آینده باقی‌مانده با دقت بیشتر و مفصل تأثیراتش امروزه تصور می‌شود، بیشترین گردید. این امر نیاز به درک تعمیقی به جای عوامل عمده کننده اقلیم (میزان تابش دریافتی، جو، اقلیم، بیوسمار و یخ هر روز [9، 11، 19، 23، 26]) اندازه‌گیری سیستماتیک پارامترهای اقلیمی (مثل دمای هوا، نسبت سطح و فشار سطح دریا) این اثر را به 150 سال پیش برداشته و دست زمانی که در آن گل‌گی ترویجی به بخش از سطح ماقلین صورت گرفته است. به این ترتیب، اقلیم می‌تواند اثرات ناسالم بر روی سیستم اقلیمی قابل شناسایی گردد [13]. با گسترش تکنولوژی و منابع طبیعی به گذشته، دستیابی به اطلاعات ذکرده شده در آرشیوهای اقلیمی و اکتشافت که زیر زمین نشسته و به حفظ اطلاعات پارامترهای محیطی در گذشته می‌باشد و بطور خاص دارای اکتشافات نشسته که مایه پرورش این اطلاعات رشد سالانه مرجعی 1- Annual Growth Rings of Coral
شواهد مفضله‌های یخب‌ز

1- دلایل مطالعه مفضله‌های یخب‌ز

مفضله‌های یخب‌ز بیش از هر رکورد طبیعی دیگر اقیم (مانند حلقات درختی، یا لاشه‌های رسوبی) دارای اطلاعات اقیم‌برداری فراوانی این زمین و نه‌آرشیوی است که بطور مستقیم تعدادی از متغیرهای کلیدی و مهم سیستم زمین را ثبت می‌کند [۲۳، ۲۴]. مفضله‌های عمیق در یک زمانه اطلاعاتی درباره اقیم‌برداری را از طریق رسوبات کف اقیانوس ام‌بی‌یو از هر رکورد فراهم می‌کند. مثالی از مفضله‌های کاربردی داده‌های اطلاعاتی، روش تعریف دمای است. هنگامی که مفضله‌های رسوبی آنالیز می‌شوند، مقفی به سختی وردهای پلانکتیکی را که در جهات مختلف و بسته به دمای آبی که در آن رشد کرده و خالی گرفته‌اند، جدا می‌کند. با شمارش تعداد وردهای پیچ‌خورده، دمای سطح آب در زمان رشد آنها را می‌توان تعیین نمود. درک رفتار و عملکرد پلانکتیکی برای یافتن رکورد تاریخی دمای اقیانوس ضروری است. از سوی دیگر، تجمع رسوبات نسبت به تجمع بر روی پریشکشی یخ، خیلی کندصورت می‌گردد.
این آمروجیدر کوردهای طولانی تراز مرنگه‌های رسوبی ولی باقلیتی کم‌تربرای تحلیل تغییرات کوتاه‌مدت می‌شود. بطوری که دوره‌های چندین ساله، از درون مرنگه‌های رسوبی تحلیل کرد اما تجزیه و تحلیل‌های سالانه، حتی فصلی از طریق مرنگه‌های یخبندن، پذیر این است که عبارت‌تهرگر چه مرنگه‌های رسوبی می‌توانند رکودهای جدید میلیون ساله فراهم کند که باهم‌صدورالعمل مرنگه‌های یخبندن برای می‌کند ولی رکودهای مرنگه‌های یخبندن و بطور واقعی قابل شرح بوده و شامل رکودهای اقیم‌می فصل و غیرمنقطع مربوط به صدها،اراسال می‌باشد. این رکودهای توانده در برگرده بدان، زیست، سرعت باد، رطوبت، ترکیب شیمیایی و گاز جو باهنر فوران‌های آتشفشانی، اثر قطعی مواد کیفی، مواد فرازمینی، تغییر‌برنده‌ی خورشیدی و نتوان از دیگر شخصیات اقیم‌باشد. به دلیل همزمانی این خصوصیات بیشتری در یخ است که مرنگه‌های یخبندن ازار قدرتندی در تحقيقات اقیم‌گشته‌ها و با داشتن اطلاعات مستقیم و بی‌واسته، قدرت تجزیه و تحلیل بالاتری را در پیش روی محققین قرار می‌دهد [۲۹،۲۳،۰۲]، ۲۹.

۲- نحوه حفایر و ترتیب مرنگه‌های یخبندن
مرنگه‌اصطلالی است که برای توصیف یک بخش استوانه‌ای با رشدناهای از مواد به هم پوسته بکار می‌رود که در اینجا بطور خاص، مرنگه‌های یخبندن استوانه‌های این حفر شده از یخ‌خال‌های طبیعی و صفحات یخ قطبی است [۱،۹،۱]. عناصری مرنگه که ساده ای نیست. یخ باستی از عمق و تحت فشارهای زیاد دوباره بسته آید اطلاعات دریابه زایه کنن، عمق، نیروهایی که باشد اکدام گردد، همه باستی در طی حفایر تقویت شودو اندکی نفس دروله می‌شوند. دربرگیرنده مقرزه‌ی بزرگ‌تران‌تر باشد.

۱- Cylinder
کننده ۲۰ متر بیخ، در بزرگترین بهای نوک مته خاص، لوله مغزه، گیبرنده تراپه، موتور، بهره ابزار ویژه‌ای ضدعفونی‌سازی است که به طور مثال درکی مغزه ۳۰۰ متری، همه از کاله ۴۰۰ متری اورژان هستند. در حالت که مته برای ایجاد سوراخ و بخشی در درون زمین باید مورد بخشی از مغزه بین ۵ و ۶ متر برده شده و از پایه بخش جدا گردد، به سطح کشیده می‌شود. سپس این مغزه به اتفاق بزرگی برای نزدیکی به سطح جهت پردازش و انالیز‌های بعدی فرستاده می‌شود. در این محل مغزه پس از پردازش و نمونه‌گیری، جهت ارسال به آزمایشگاه‌های دریافت‌متحدث بسته‌بندی می‌شوند. از آنجایی که غلظت ترکیبات انداره‌گیری شده در بخش خیلی بایین است، به آسانی نمونه‌های بخش آلوده می‌شوند. بطوری که لمس نمونه‌های بخش آلوده می‌شود و به وسیله‌ای دست لخت، آن را لوله خواهد کرد. به همین دلیل در کلیه محمل محققین باید بر روی لباس گرم خود، لباس تمیز خاصی را پوشش دهند تا از عدم آلودگی نمونه‌ها مطمئن گردد. سطح خارجی مغزه برای استفاده در آلاتی آیزوتوپ برده می‌شود و قطعات تمیزتر درونی مغزه مختصاً در آپ به‌نیاً خالص تحت شرایط تمیز آتشوبی می‌شود. در ارسال درکی‌سازی بالاترین بسته‌بندی شده و در دمای زیر ۱۵ درصد عملاً انتقال و ذخیره آنها صورت می‌گیرد. در آزمایشگاه‌های نیز پس از وزن کردن، آلاینده‌های سطح از طریق تصعيد لبه‌های بیرونی مغزه بر طرف می‌شود [۸، ۹].

اگرچه اکثر آلانیز‌ها با استفاده تحت شرایط آزمایشگاهی روي دهد ولی اندازه‌گیری در محل حفایر نیز حائز اهمیت فراوان است. اندازه‌گیری در محل استخراج مغزه ضمن آن که تنش عمودی، کمیت سوراخ، دمای بیخ، پژوهی شناختنی و خصوصات الکتریکی را آشکار می‌کند به دانشمندان اجازه می‌دهد تا دینامیک ورقه‌های بیخ و تغییرات اثرگذار بر چرخه‌شناسی مغزه بیخ را تعیین نمایند [۸].
تمامی مگزه‌های یخی برای نیستند و تغییرات بستگی به عمق حفاری و عرض جغرافیایی محل دارد. مگزه‌ها را از نظر عمق به سه دسته کومعم، متوسط و عمیق طبقه‌بندی می‌کند. زکودهای مغزه‌یخی بلند(≤10 سال) به مناطق قطبی محدود و مغزه‌ها گرفته‌یک مغزه بلند، نیاز به چنده‌فصال حفاری و عملیات لجستیکی عمده‌ی دارد. برای بهبود‌سازی عملکرد علمی چنین سرمایه‌گذاری بر روی

از نظر زمان و پول، محل حفاری برابر مقدماتی جمع‌آوری سطحی، شرایط بر فر

دانه‌ها، توبوگرافی بستر و سطح و جریان‌یخ، با پایتخت با دقت انتخاب شود. در اینجا

متوسط رادار هولیک سیستماتیک و مخصوب یخ از طریق زفارسنجی تولید می‌گردد. این کار برای هر پروژه دقیق و طولانی مدت است زیرا به طور معمول نمی‌کند سیستم رادار وجود دارد که قادر به گزارش بهتر و در

هنگام‌های خسته و زمان پرواز آن خیلی محدود است. علاوه بر این زفارسنجی

رادار یخی سطحی، نمونه‌گیری جوی، گودال‌های بر فراکسی کومعم در این

محل‌ها باید انجام گیرد و جزئیات به داده‌های بررسی شده رادار هولیک اضافه

گردد تا گیفت اطلاعات محیطی گذشته مورد انتظار از محل، تعیین گردد. بدین

ترتیب چند سال ازمان تحقیق صرف انتخاب محل مناسب قبل ازحافی مگزه‌های

عمیق خواهد شد. [126] [\n
مغزه‌های یخی کومعم و متوسط (1000-10000 متر، 10-10 سال) نتیجتاً از

مناطق قطبی که از محل‌هایی با عرض جغرافیایی بالا- یا نیز تهیه می‌شوند.

حفاری این مغزه‌ها از نظر لجستیکی آسانتر است چون معمولاً می‌توان در یک

فصل و به‌سیله یک گروه نسبتاً گوچک انجام داد. با وجود این، انتخاب محل برای

مغزه‌ها کومعم و متوسط نیز نیاز به چند سال مطالعه میدانی قبل از حفاری

داد. بررسی راداری در انجا چندان عامل محدود کننده نیست چون بیش از یک
سیستم راداری می‌تواند به اعماق صدتا هزار متری نفوذ کند. از طرف دیگر انتهای مغزه‌های یخی به اندازه کافی از بالای سنج بستر دور است که توبوگرافی بستر صرف آم فرعی در انتخاب محل به حساب آید. اینچه در برنام‌ریزی عرض‌های بایین مشکل زاست از یک طرف توسه حمایتی و تشریک متعلق به بروزه تحقیقاتی کشورهایی است که مغزه در آنها می‌باشد. از طرف دیگر بیدارگدن توده یخ مناسب در زمین‌های متغیر از نظر توبوگرافی و اقیمی است. علاوه بر این مطالعه گاز‌های حبس شده در یک نیز مشکل می‌باشد زیرا نیاز به حمل و انتقال نمونه مغزه‌های یخزده از یک محل دور دارد [۲۶].

با هرچاله مشکلات فوق به دلیل آن که استفاده از مغزه‌های یخی عرض‌های جغرافیایی متفاوت، چشم‌اندازهای مختلفی از نوسانات اقیمی را به روي محققین می‌گشود. به علت اینکه از جهان می‌شود. به طوری که از مناطق حفره‌های مغزه‌های یخی در چهار سنج می‌توان به مغزه‌های حفاری شده در گرینلند به شمار کرت، میلیستف، سامیت، بروزه، ضخامت یخی گرینلند‌یالات متحده (GRIP)، (GISP)، (GISP) بروره مغزه‌ی خی گرینلندی (GRIP) (حاشیه‌های مشترک فرانسه- ایالات متحده- روسیه و (GRIP) می‌باشد و مغزه‌های حفاری شده در قطب جنوب که شامل بایرد، وستک و دوم سی‌می‌باشد، اشاره کرد [۸].

1. Crete
2. Milcent
3. Summit
4. The U.S. Greenland Ice sheet project
5. Greenland Ice Core project
6. Byrd
7. Vostok
8. Dome C
3- بازرسی اقلیم گذشته (آرشیوی):
برف در موقع پیشرفت، ترکیباتی را که در آن لحظه در هوا وجود دارد با خود حمل می‌کند، این ترکیبات شامل یون‌های سولفات، نیترات و پویا دیگر، غبار، ذرات رادیوакتیو و فلزات ناشی می‌باشند. زمانی که برف در مکانی می‌بارد، دماهای بالای درجه یخ‌زدگی (صغر درجه سانتی‌گراد) ندارد و وجود دارد. مناطق قطبی با اعرضه جغرافیایی بالا درنتیجه برف یکسال روی برف‌های ذوب نشده سال قبل می‌ریزد. همچنان که برف هر سال بوسیله پیش و پس دفع می‌شود، ترکیبات آن نیزی آن دفن می‌شود. با حفایزی از سطح صفحات برف و آنتی‌برف از عمق‌های بیشتر و بیشتر، تاریخ و گذشته ترکیبات موجود در هوا می‌تواند بدست آید، بنابراین بر ترتیب برفی که در عمق بیش از ۸۰ متری است در اثر وزن برف بالایی آن، به یخ تبدیل شده و موجب گذشته کوچک هوا در آن حیس می‌شود. بنابراین صفحات یخ علاوه بر حیض ترکیبات هوا، نمونه‌کوچکی از هواهای خود را نیز حیض می‌کند. بهعنوان مثال، در اکسید کربن و آکسیدزین به همان نسبتی که در جو بوده‌اند، باقی می‌ماند. این حیض‌های حیض شده ناز آنتی‌برف شده و اطلاعاتی درباره ترکیب جو در زمان شکل گیری یخ فراهم می‌کند [۸، ۹]. یخچال نتیجه تجمع و تراکم برف در طی دوره‌های زمانی طولانی‌مدت است. هنگامی که تراکم برف كمتر گردید و به عبارتی خشکیانت اتفاق افتاد باشد، این موضوع در لایه‌های یخ حفظ می‌گردد. آب حیض شده در یخچالها، در حالی اصلی و اولیه خودبایی می‌ماند و با افزایش اقلیمی حاکم در زمان خود را با خود در داشته است. باقی‌مانده تاریخ و تاریخ‌های ناخالصی‌ها است که می‌تواند اطلاعات مفیدی بدست دهد و راز اقلیم گذشته را آشکار نماید. بنابراین ترتیب ضخامت‌های یخ و توده‌های یخ عرض‌های بالا نشان‌دهندهٔ خود
رکورد تفصیلی از شرایط اقلیمی و ترکیب جوی و جدود زمانی رسوب بر فرا حفظ می‌کند. جدول شماره (۱) مولفه‌هایی که تغییرات جهانی آنها می‌تواند با استفاده از رکورد‌های مغز‌های خی اثبات گردد، نشان می‌دهد [۲۶].

۴- روش‌های تفسیر اطلاعات و سن‌پای‌بایی از مغز‌های خی

- تفسیر اطلاعات

ویژگی‌های خصوصیاتی که در تحقیقات حاصل از مغز‌های خی می‌توانند اشاره کنند، شودو اطلاعات محیطی که از آنها حاصل می‌گردد در جدول (۲) نشان داده شده است. در اینجا به جهت اختصار به عمده‌ترین روش‌های تفسیر اطلاعات اقلیمی گذشته حاصل از مغز‌های خی اشاره می‌گردد.

جدول (۱): اجزای متغیر سیستم زمین و قابل اثبات از طریق رکورد‌های مغز‌های خی

<table>
<thead>
<tr>
<th>نمودار</th>
<th>پیش‌بینی زمین و قابل اثبات از طریق رکورد‌های مغز‌های خی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودار</td>
<td>پیش‌بینی زمین و قابل اثبات از طریق رکورد‌های مغز‌های خی</td>
</tr>
</tbody>
</table>

- گازهای کلیات
- انتخابی
- دما جوی
- تابش استراتسفر- نورهای تابشی
- زمان نورهای انتخابی
- الگوهای بارش
- نورینجهار، هر فر و بی‌های دریا
- حجم بی و سطح دریا
- ده‌سکیب، بی‌های و وبگ‌های بی
- چرخه‌های زیست گیاهانی
- هر بی‌های چرخه‌ای
- انتخابی
- دما حاصل از فعالیت‌های آتشفشان
- فعالیت‌های انتخابی
- میزان جاده‌ای
- فعالیت‌های شاره‌ای مراسمی
ضریب (دلتا) ایزوتوب اکسیژن-18. ایزوتوب‌های ثابت 1 ناچیز که بصورت مقدارید دلتا محاسبه می‌شود از زمان توسعه ابزار دقیق اندازه‌گیری‌های آنها در دهه 1950. جزء لاینفک تحقیقات اقلیم شدمانی. اختلاف‌های ایزوتوبی، ناشی از تعداد متفاوت نترون‌ها در هسته اتم می‌باشد. برای مثال اکسیژن اکسیژن (19/18) نیوترون و 8 نیوترون دارند و باعث می‌شود تا اکسیژن داري 16(0) گردد که به ایزوتوب سبک معروف است. ایزوتوب دیگر اکسیژن دارای 10 نیوترون و جرم اتمی 18(0) می‌باشد. (با فراوانی طبیعی 2/00%) که ایزوتوب سنگین می‌گویند. در مجموع به ترکیبات مختلف یک ساختام اتمی اصطلاحاً «ایزوتروبومرس» می‌گویند [8].

آب اقیانوس‌ها شامل مقدارید زیادتری و مقدر کمی 16 می‌باشد. مولکول‌های آب با 18 همان نظم آب را در جنین‌های دیگر دارند. جر این که جون سنگین‌تر است (12٪ سنگین‌تر از اکسیژن معومی) در روى زمین به طرف قطب‌ین حرکت می‌کند، سرد می‌شوند و آب کمتری را می‌توانند در خود نگه دارند در نتیجه آب از توده‌ها بصورت بارش (باران یا برف) از دست می‌رود. بدین ترتیب برف حاصل از پاش دارای مقادیر بیشتری از 0، نسبت به 0، شود. زیرا هم مقادیر آن در بخار کم بوده و هم به دلیل انقباض اسان‌تر از 0، در اثر باش رودریژ به زمین می‌رسد. اگر پخش‌های کستر شابنده نسبت ایزوتوب اکسیژن آب اقیانوس بطور فراوانداز ار توده 18 غنی می‌شود، زیرا به هر طریق 16 در ری پخش‌های کاسته و کم‌ایجاد دارد. از سوی دیگر این فاصله به دما بستگی دارد. بنابراین برقراری که در زمستان می‌باشد از 0 غنی شده است.

1- به ایزوتوب‌های ثابت می‌گویند که تجزیه‌شده‌اند از ایزوتوب‌های رادیواکتیو (مثل اورانیوم).
2- اکسیژن دارای سه نوع ایزوتوب 16، 17، 18 می‌باشد.
3- Isotropomers
جدول (2): انواع ترکیبات مایعات و اادات ناحیه میوهی و اطلاعات محیطی حاصل از آنها

<table>
<thead>
<tr>
<th>تراکم‌ها</th>
<th>نوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>- گازهای خارجی (CH4, N2O)</td>
<td>مقدار گاز</td>
</tr>
<tr>
<td>- CO2</td>
<td>غلظت Gg (mg/L)</td>
</tr>
<tr>
<td>- هیدروکربن</td>
<td>Gg</td>
</tr>
<tr>
<td>- عناصر نیترید گازهای حیاتی</td>
<td>- نسبت N2/AR, O2/AR</td>
</tr>
<tr>
<td>- ژنراتور گازهای جدید</td>
<td></td>
</tr>
<tr>
<td>- عناصر نیترید گازهای حیاتی</td>
<td>- نسبت N2/AR, O2/AR</td>
</tr>
<tr>
<td>- ژنراتور گازهای جدید</td>
<td></td>
</tr>
</tbody>
</table>

گازهای خارجی (CH4, N2O):
- نسبت CH4/N2O
- نسبت CH4/N20
علاله بر این در طی دوره‌های سرد، \(\delta\) و در یخبندان در طی دوره‌های سرد، \(\delta\) به وسیله نسبی افزایش می‌یابد. در حالی که اقیانوس‌ها از نظر \(\delta\) به وسیله نسبی غنی می‌شوند. این عدم تعادل بیشتر برای اقیانوس مناطق سردتر قابل توجه است. تأثیر اقیانوس‌های گرمتر، بعد ترتیب بسته به دمای تبخیر و همچنین کانده چقدر راه را آب قبل از این که بطور روزی مناطق مرتفع ریزش کند، طی کرده است. نسبت \(\delta\) به \(\delta\) متفاوت خواهد بود.

این نسبت به عنوان ضریب یا دلتای \(\delta\) \(\delta^{18}O\) \(\delta^{18}O\) (شناخته شده و می‌تواند دقت زیاد با استفاده از طیف‌سنج توده‌ای \(\delta^{18}O\) اندازه‌گیری شود. تغییر دما از تابستان به زمستان، در دراز مدت نوسان خیلی مشخص در نسبت \(\delta\) به \(\delta\) آیجاد می‌کند. بطوری که هر لایه سالیانه رف با \(\delta^{18}O\) غنی آغاز می‌شود و سپس از نظر \(\delta\) فقیر شده و مجدداً غنی می‌گردد. با شمارش تعداد نوسانات، سن مغزه در عمق‌های مختلف تعیین می‌شود. در دوره‌های زمین طولانی‌تر، این نسبت متوسط دمای مناطق بین محل تبخیر و محل مغزه را نشان می‌دهد. برای اهداف اقیانوسی-

شناخته شدن، مقدار دلتا برای نشان دادن مقدار نسبی \(\delta\) به صورت زیر استفاده می‌شود:

\[
\delta = \frac{(18O / 16O) \times 1000 - (18O / 16O) \text{ استاندارد}}{(18O / 16O) \text{ استاندارد}}
\]

این ضریب نسبت به یک استاندارد معروف به استاندارد \(\text{Vienna SMOW}\) محاسبه می‌شود. این استاندارد \(\text{Vienna SMOW}\) (SNOW) آب اقیانوس برای یا

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\(\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

\[
\text{SNOW = } (18O / 16O) \text{ استاندارد}
\]

سن‌یابی آنها نیز می‌پردازد.

1. Mass Spectrometer
2. Standard Mean Ocean Water (SMOW)
قابلیت هدایت الکتریکی ۱. یکی از اندازه‌گیری‌های در برخی‌های مغزی یخ، قابلیت هدایت الکتریکی است. زیرا که باعث توصیف سرعتی از یک قسمت شیمیایی مغز یخ. گرچه عموماً ۲ متر اول مغز یخ برای استفاده خیلی نازک و شکننده است ولی اندازه‌گیری الکتریکی مغز یخ بر روی گل مغز انجام شود. روش قابلیت الکتریکی (ECM) جریان جاری بین دو کنار که از این مترول کننده در یک پتانسیل جنگ هزار ولت دارند، اندازه‌گیری می‌گند. الکتروودها در یک رنگی یک سانتی‌متری جدا از یکی‌گره‌هستند و جریان مستقیم استفاده می‌شود. اندازه‌گیری توان مکانی جنگ میلی‌متری داشته و با حرکت الکتروودها در طول سطح هموار آماده شده، عمل می‌کند. ECM منحصراً مربوط به راحتی است. پایه در یک است که جریان بالا نشانگر شرایط اسیدی بیشتر است. به دلیل حساسیت اسید سولفوریک و تولانی حل ترکیباتی که ضخامت کمتر از سانتی‌متر دارد، این روش برای موضع‌هایی که رخ داد آتش‌سوزانی در مغز وجود دارد، مناسب می‌باشد. همچنین تحت شرایط صحیح، روش ECM می‌تواند لاشهای سالنگی و شاید آمونیاک همراه با بیوماس را شناسایی کند [۲۴، ۹].

دوتروئون ۲. هیدروژن نیز دارای ایزوتوپ است. جنینه یک پروتون در هسته اتم خود داشته باشند. این اتم، هیدروژن عمومی است. اگر یک نوتر و نیز باشد اتم را هیدروژن سنگین باید روبه‌رو می‌شود. دوتروئون یک ایزوتوپ نیز است که قدرت ترکیب ۲۰۱۵/۰ تا ۲۰۱۵/۰ درصد ترکیبات هیدروژن طبیعی را دارد و از هیدروژن عمومی، فعل و افرادهای آرامشی داردوی توانده به‌دیدن و یا اقیانوس شاسی دیرینه همچون ۱۸ استفاده شود، درواقع به صورت ضریب (دلتا) محاسبه می‌شود.

۱ - Electrical Conductivity Method (ECM)
۲ - Deuterium
در قطب جنوب افزایش یک درجه سانتی‌گراد دما باعث کاهش 9 میل 1 دوترویم می‌شود [2]. ضریب دوترویم (مقدار دلتا) درست مانند 18 محاسبه شده و دلایل گذشته را نشان می‌دهد. مقدار دوتراپ تمام ماراد نیست، با وجود این انرژی کمی به عنوان دوتراپ اضافی شناخته شده است. مقایسه خطی دوتراپ و اکسپوزن - 18 در موقعیت‌های مختلف که اصطلاحاً GMWL نامیده می‌شود، واحد ماراد دوتراپ را تعبین می‌کنند [3].

d = dD - 8d. 18°

ماراد دوتراپ (d) شاخص پیچیدنی گردش هوا است. آنالیز ماراد دوتراپ حاکی از تأثیر پیچیده بارش و تبخر مجدد از مغزه‌های خشی است [25]. ضریب (d) با ارتفاع افزایش می‌یابد و بنابراین می‌تواند شرایط محلی را که بر فر پاریده قبل از اینکه بصورت یخچال حرکت کنند، نشان دهد [8، 9].

رگردویه‌های عمده. یون‌های عمده یافت شده در فر دارای سیگنال‌های سالیانه هستند. منشأ برخی از یون‌ها مانند سدیم (Na+) و کلرید (Cl-) آبیار از درب است و نیمه‌مانند سولفات (SO42-) از فعالیت‌های آنسانی، بیولوژیکی و آنتیفیورانس و نیز دریا حاصل می‌شود. سرمادین سوخت‌های سلیم در نیمه‌برداری شمایی تولید سولفات و نیترات (NO3-) می‌کند و می‌توان سطح زیادی از این ترکیبات را در رگردویه‌های حاصل از حفایزی مغزه‌های خشی مشاهده نمود. رگردویه‌های حاصل از مغزه‌های اطلاعات مهمی درباره منبع‌ها نسیب به محل حفایزی که برای تفسیر انددازه‌گیری‌های دیگر مهم می‌باشد. آنتیفیورانس (که تولید سولفات و کلرید می‌کند) و تغییر در فعالیت‌های تولیدی‌کننده یون (مانند اختراق سوخت فسیلی) در اهام می‌کند [9].

1 - میل
2 - Deviation of a Sample from the Meteoric water Line (GMWL)
گرد و غبار ۱. یکی دیگر از خصوصیات مغزه‌های یخی، سیگنال‌های سالیانه
حاصل از گرد و غبار در آن است. مقدار گرد و غبار حمل شده به مناطق قطری و
صفحات یخ بسته به وسعت مناطق تغذیه کننده گردوبخار، نیروی باد، فعالیت‌های
انششاتی و آتشفشانی‌ها متفاوت می‌باشد. اوج گردوبخار اغلب در بخش بیشتر
سالیانه باقی می‌ماند. بدین ترتیب همچنین از وقوع آن در میان نواحی
سیگنال‌های گردوده شوند. انتششاتی ها می‌توانند تولید مقدار زیادی ذرات گرد و
رکوردی در یخ‌های گذشته داشته‌اند. اسکله میکروگرافی ذرات بوزه از اوج گرد و
غبار در مغزه یخی، می‌تواند نشان دهد که آیا سیگنال گرد و غبار مربوط به
انششاتی شناخته شده از تان با این اساس سه قطعی برای آن بخش از مغزه
محاسبه گردند. برای دوران‌های پیش از تاریخ، رکورد گرد و غبار ابزار مهمی جهت
پیش‌بینی تاریخ فعالیت انتششاتی است. به علاوه دریایی پیشروی یخ‌های بزرگ و
طبیعت‌شناسی یخچال‌ها، اغلب دوره‌های آب‌زدایی در خاک بوجود می‌آید و مناطق
غیرقابل روش زیادی باقی می‌ماند. این دوره‌های تواند از طریق سطوح زیاد گرد
و غبار در مغزه شناسایی شود [۹] .

وجود گردوبخار نشان‌دهنده‌ی خنالی نسبت به دوره‌های بین‌یخچالی حاکی
از آن است که دوره‌های بین‌یخچالی درای دارای بیشتری از باران و سیل، به شدت بادهای
بسطی در مناطق بیابانی و انتقال موثرتر دراز گرد و غبار در طول مسیر (از
قطب‌های به طرف استوای) بوده‌اند. مقدار برابر اثرها دریابی در دوره‌های
یخچالی نسبت به سطوح بین‌یخچالی، گردش قویت‌تری جریان‌های هوا از طی
دوره‌های بین‌یخچالی را تقویت کرده است [۲] .

1. Dust
• گازهای گلخانه‌ای. برخلاف اکسیژن و دوتروپم که بصورة شاخص‌های مستقیم در اقیانوسیه دیرینه استفاده می‌شوند، روش‌های غیرمستقیم نیز با همان کیفیت در این زمینه وجود دارند. گازهای گلخانه‌ای حاکی از نیروی تابشی بوته و ایزوتوپ‌های کیهانی مانند بریلم حاکی از نیروی خورشیدی می‌باشند.

استخراج گازهای خشک نمی‌تواند مقادیر CO₂ در هوا را در هر زمان مورد بررسی نشان دهد بلکه محققین را قادر به افتتاح ترکیب ایزوتوپی CO₂ در حیات‌های گاز مغزه یخی می‌کند که بعداً می‌تواند با مقادیر دوتروپم مقایسه شود و هر دو حاکی از گرمشدن جهان می‌باشد. زمانی که نوسانات آنها (巴拉و و پایین رفت) هماهنگ باشند، رکورد CO₂ بادفت بیشتری می‌تواند بسته‌ای بیشتری در یک نمونه را باشد. گزاره اول افزایش می‌یابد اثر کمی بر روی دینامیک اقیانوس دارد. برای مثال مالین ۱ و همکارانش در یافتن که جنگجویی اول افزایش یابد باعث می‌شود شرور در Dome Concordia افزایش دوتروپم ۳۰۰۰ سال در مغزه‌ای یخی قطب جنوب به زمان ۲۰۰۰۰۰۰ برگردید (۲۰۰۰). آنها احتمال تناوب CO₂ را نیز از طریق واکنش‌های شیمیایی در خ حالها با استفاده از واکنش‌های اسید‌گرانی و اکسیداسیون ترکیبات ارگانیک بررسی کرده و نتایج گرفته چون پراکنش حاکی از نمودن دهه راستا عدم اطمینان در آلیاژ است، CO₂ مقادیر CO₂ حاصل از نمونه‌های مجاور هم راستا عدم اطمینان در آنالیز است.

۸ [۱].

اکسید نیتروس ۳ یکی از گازهای ناچیز گلخانه‌ای (گیوی) است که از بالا یا (فرآیندهای اقیانوسی و حاکی در مناطق جنوب و معتدل تولید می‌شود و در استراتوسفروپسیله‌های تابشی تفکیک می‌شود. به دلیل فعالیت‌های انسان فلزات

۱ - Monnin
۲ - Nitrous Oxide
۳ - Ocean upwelling
آن حدود ۷۵ درصد در سال افراشی می‌باشد. فلوکی ری و همکارانش با استفاده از دو مغزی‌های سامیت گرینلند مرکزی، دریافتند که غلظت اکسید نیتراس هماهنگ با تغییرات دما در نیکره شمالی (۱۹۹۹) افراشی می‌باشد. با وجود این، نتایج می‌تواند به دو روش کاری به تحلیل انسانی تحت تأثیر قرار گیرد. بازی‌های و آزمایش مجدد احتمال آلودگی را حذف کردکی و اکشن شیمیایی

یا منابع مصنوعی موثر در آن را از بین نبرد.[۸]

- نظریت فلزات ناجی. ایریدیوم ۳ عنصری است که به فراوانی در مواد خارج از زمین‌های شوند. بنابراین مطالعات مربوط به نظریت فلزات ناجی در مغزه‌هایی به روش‌شنونده بحث برخوردار شده بوده که می‌تواند بر روی پژوهش‌های باشد. (۹)

- خصوصیات فیزیکی مغزه. این ویژگی، لاشه‌های سالانه حاصل از اختلاف دما بین تایتان و زمستان و نیز شناسایی‌های تغییر شکل یخبندان بر روی اثرگذار باشد را نشان می‌دهد. این امر در آنالیز و نتایج مراحل بعدی کاربر روی مغزه‌ها حائز‌همیت می‌باشد[۹].

- روش‌های سن‌یابی ۴

سن‌یابی دقیق، مرحله اساسی در کار با داده‌های اقیمی گذشته می‌باشد[۳]

که برای تکرار تاریخ و بررسی این گروه تنها به تجزیه و تحلیل اقیمی گذشته حاصل از مغزه‌هایی در صورتی است. به بروز سناقل اطمینان نمی‌توان هم‌زمان بودن داده‌ها، بیشگاه یا کنترل بودن زمان‌یابی و یا برآورد

1 - Fluckiger et al.
2 - Iridium
3 - Dating Methods
مقدار تغییر را پیش‌بینی نمود. سن‌بایی مغزه بخش اساساً فرایند ایجاد یک مدل عمق به سبب استفاده از تنوعی از روش‌های مکمل می‌باشد. سن‌بایی همین‌طور موضوعی برای پرزیانی و اصلاح مدل جهت درک بهتر آن است. برای مثال بر اورود سن از طریق مشاهده یک حادثه اشکالی ممکن است بعدها بوسیله نتاوی یک آلیز شیمیایی بر روی مغزه اصلاح شود. همچنین این موضوع برای مقایسه نتایج روشهای مختلف در نتیجه چگونگی استفاده و ارتباط آنها با ابزاری کمی است. روشهای سن‌بایی به سه دسته تئوریکی، فیزیکی و شیمیایی تقسیم می‌شوند [۱۹].

● روشهای سن‌بایی تئوریکی. این روشهای سن‌بایی، از مدل‌های استفاده‌می‌کند که قوانین علمی برجان یا شرحی می‌دهد [۱۷]. اگرچه روشهای بهتری وجود دارد اما مدل‌سازی جریان، بهترین تکنیک موجود قبل از نمونه‌گیری است و می‌تواند برای برنامه‌ریزی استفاده شود. مدل‌سازی روند تولید یخ براساس ضخامت (ناریک) لایه‌های سالانه یخ است که هر سال اتفاق می‌افتد و بوسیله بریش بر فراز دفن می‌شود و در ابتدا بر فراز فرشه‌شده شده و به دنبال آن به دلیل شکل پذیری یخ، تغییر شکل داده و در نهایت به یخ بدل می‌شود (با چگالی ۸۳۰–۹۰۰ kg/m۳). ساده‌ترین مدل ریاضی براساس کار انجم شده توسط نای [۱] است که فرض می‌شود «تغییر شکل عمودی در طول هر خش‌عمودی در یخ، در هر لحظه بخش و یک‌واکنش است و هیچ ذوب‌شدن نیست وجود ندارد» [۱۷]. با فرض بعدی که میزان نازکی ضخامت یخ پاسخ است مقیاس زمانی نای بدست می‌آید که t سن در عمق یخ است و h کل ضخامت معادل یخ است (مغزه ممکن است شامل یخ بر فراز باشد که هنوز به یخ بدل نشده‌اند). c مقدار تراکم سالانه و Z فاصله بالای بسته‌ریز است. مقدار تراکم نسبت عکس با حداکثر

۱. Nye
سن محتمل دارد بطوری که افزایش آن حداکثر سن محتمل را کوتاه می‌کند (در صورتی که تفکیک زمانی افزایش می‌یابد).

روش‌های سمی‌پذیر فیزیکی. مدل‌های بطوری شبیه‌ای اشاره به این حقيقة دارد که فاصله زمانی مرجع در اطراف مقدار تراکم در منطقه کنترل می‌شود. بنابراین هنگام ناکامی و دیگر فراشته‌های فیزیکی نادیده گرفته شود. بر این مورد، مقدار تراکم، اولین بار از تغییرات از سر مغز از فراهم می‌کند. لایه‌های مشخص خاکستر در بیخ، ویژگی‌های فیزیکی دیگر برای سن پایین مغز است. در این مورد، داده‌های منظم تغییرات زمانی باعث تغییرات آنتی‌فیزیکی شناخته شده در قبیل می‌تواند مشخص گردد که برای پیشرفت در این کار ممولاً نیاز به تاثیر تغییرات است تا بتوان جستجوی مقایسه‌ای را ابزار انجام داد.

روش‌های سمی‌پذیر شیمیایی. یکی از روش‌های سمی‌پذیرشیمیایی، از انواع بی‌سوزی/تیان‌سفیری شناخته‌شده برای داشتن تغییرات قلی در غلظت (مثال آ) استفاده می‌کند تا شروع فصل‌های خاص سال (مانند پاییز) ایجاد نشانه‌ی کند. زمانی که نشانه‌های قلی پیدا شوند، لایه‌های سالانه می‌توانند شمارش گردند. این کار برای درک تغییرات در گردش جوی، میزان تولید و ناحیه منبع یا منبع می‌باشد. این کار همچنین می‌تواند برای تشخیص بین منابع محلی و منابع دیگر جهت انتخاب منبع استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید. کاسته‌شدن از نقاط مختلف پیوسته استفاده شود و به تفسیر رگوریدی کمک نماید.
زمان کمتری (مثلاً ۲۰ دقیقه در هر متر) [۲۸] فراهم می‌کند. این مسئله تا حدودی شناسایی لایه‌های سالیانه را ساده می‌کند و توانایی سنی‌ای شمارش شود. علاوه براین تفکیک داده‌ها بوسیله ذوب کنده متمرکز، به شناسایی زمان‌یابی فصل انواع بیون‌ها کمک می‌کند. در روش شیمیایی دیگر، از مشخصه‌های شیمیایی حوادث آتش‌سوزی استفاده می‌شود. با عدم حضور خاکستر مرئی، نقاط اوج در اسیدیت می‌تواند در جایی و تاریخ حوادث آتش‌سوزی استفاده گردد. زیرا مقدار زیادی از گازهای اسیدی قوی در طی فوران‌های بزرگ آزاد می‌شوند [۱۲]. از سوی دیگر این روش در سنی‌ای آتش‌سوزی استفاده نمی‌شود. معمول‌تر است [۲۰]. برای مثال ۵ حادثه آتش‌سوزی نیمکره شمالی و جنوبی از سال ۱۲۵۰ بعد از میلاد (جدول ۴) با Newall Glacier و Dominion Range تاکنون در مغزه‌های خیال استفاده از جداکننده‌های با منشاء غیرنرم دریایی گه از \(S_{0,i}^{-1}\) حاصل می‌شود. شناسایی شدند [۱۴].

جدول (۳) : حوادث آتش‌سوزی از سال ۱۲۵۰ بعد از میلاد در مغزه‌های خیال

<table>
<thead>
<tr>
<th>تاریخ (بعد از میلاد)</th>
<th>موقعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۶۳</td>
<td>Agung</td>
</tr>
<tr>
<td>۱۸۱۵</td>
<td>Tambora , Subawa</td>
</tr>
<tr>
<td>۱۴۰۰ - ۱۴۰۰</td>
<td>Huaynaputina , Peru</td>
</tr>
<tr>
<td>۱۴۸۰</td>
<td>Mt. St.Helens</td>
</tr>
<tr>
<td>۱۲۵۰</td>
<td>Unknown , possibly EL Chichon , Mexico (Zielinski , et al. , 1994)</td>
</tr>
</tbody>
</table>

The Dominion Range and Newall Glacier
مطالعات مکمل

مطالعات اقیمی شناسی دیرینه بر روی مغزه‌های یخی نشان می‌دهد که صرف انتخاب یک محل مناسب برای گرفتن رکوردهای مخلوطی طولانی، خود به تنهایی نیاز به همکاری حداکثری رشته‌های خرودشناسی مختلف (زرافستنی) را داری یخ سطحی، توبوگرافی بستر لایه درونی و مطالعه سطح نهاده، دگرگویی و دما) دارد.

تا در نهایت منجر به مدل سازی قریب به انتخاب محل گردید. علاوه بر این نیاز به متخصصین دیگری در زمینه علوم جوی، اقیانوس شناسی، زمین شناسی و مدل سازی است تا بتواند از توانایی کامل اطلاعات محيطی گذشته‌های مغزه‌های یخی استفاده کرده.

نتیجه‌گیری

زمین سروشیت سیستم دینامیکی را دارد که توسط نیروهای بیرونی (پارامترهای مداری و تابشی) و فرآیندهای درونی تغییر می‌شود. تغییرات اقیمی در همه زمان‌ها بر روی سیستم زمین تأثیر داشتند. از گذشته‌های نه‌وجوه دور اثرات ناشی از فعالیت‌های انسانی و دخالت‌هایی در طبیعت به این خرخ اضافه شده است با این تفاوت که انسان‌ها به دلیل تقریباً ثابت‌بودن اقیمی در طی ۵۰۰ سال گذشته (واختر هولوسن) تغییرات اقیمی را خوب از تجربه نکرده‌اند و نسبت به آن نیز پیشی‌آمده‌های درست‌بوده. بنابراین شناسایی تأثیرات منطقه‌ای اقیمی، انمسفر، اقیانوس و جریان‌های آبی‌سفر و یخ‌کره برای ادامه حیات بر روی کره زمین و برنامه‌ریزی‌های آتی در جهت بهینه‌سازی آن ضروری است. در این راستا بررسی

1. چهت اطلاع بیشتر به منابع ذکر شده در پایان مقایه و دگر تحقیقات انجام شده در زمینه مغزه‌های یخی مراجعه شود.
اقالیم گذشته چه تبدیلی به عمل‌کرد آن از گذشته ناکنون و پیش‌بینی شرایط اقیمی آینده پاسخگویان، می‌تواند آگاهی و درک انسان را از سیستم زمین بیشتر نماید. بدین‌منظور در سال‌های آتی رگوهایی مغزه‌هایی خیچه به همراه رگوهایی دیگر در این زمینه (مانند حلقه‌های درختی، گردنه‌های گیاهی، رسوبات دریاچه‌ای و اقیانوسی و...) می‌تواند چشمانداز موردی‌ز دیپ‌شتر درک انسان از تغییرات اقیمی و شاید نتایج حاصل از رفتار انسان را در محیط فراهم نماید.

نکته‌ای که باید بدان توجه کرد آن است که با توجه به گرم‌شدن زمین در سال‌های اخیر، توده‌های یخ نزدیک به نقطه ذوب بوده و به کوه‌کنین تغيیر در دما حساس هستند. این مسئله در عرض‌هایی پایین بسیار حادتر می‌باشد زیرا که هر ساله در برخی از مناطق ضخامتی از یخ همراه با گنجشکی اطلاعات درون آن در حال آب‌شدن می‌باشد. این امر از یک‌سوز تغییر رگودهای جوی در این مغزه‌ها را به دنبال دارد و از سوی دیگر از مطالعات سریعتر بر روی مغزه‌هایی یخی عرض‌هایی پایین را نشان می‌دهد، زیرا که برای یوشع کامل اطلاعات مکریزی از کره زمین، دسترسی به اطلاعات فوق لازم است. در این راستا‌گروی بزنگ می‌رسد که مطالعه بر روی مغزه‌هایی خیچه در کشورهای مناطق حاره و جنوب‌های مانند ایران در اولویت قرار گیرد و پس از مطالعات مقدماتی، در صورت مساعدت‌دند شرایط، تحقیقات آن جامه عمل بگیرد.
References

23-The Summit Ice Cores (GISP2 and GRIP), http://www.agu.org/revgeophys/mayews01/node2.html.