Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 90-109 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei S, Alijani B, Hejazizadeh Z, Mohammadi B. (2025). The study of synoptic-dynamic patterns and trends of snow cover changes in the northeast of Iran. jgs. 25(78), 90-109. doi:10.61186/jgs.25.78.14
URL: http://jgs.khu.ac.ir/article-1-4279-en.html
1- PhD student of climatology, Faculty of Geographical Sciences, University of Kharazmi Tehran, Iran,
2- Professor of Climatology, Faculty of Geographical Sciences, University of Kharazmi Tehran, Iran, , bralijani@gmail.com
3- Professor of Climatology, Faculty of Geographical Sciences, University of Kharazmi Tehran, Iran,
4- Associate Professor, Department of Climatology, Faculty of Natural Resources, Kurdistan University, Sanandaj, Iran,
Abstract:   (3888 Views)
This study investigates the most significant synoptic patterns associated with widespread snowfall in the eastern half of Iran. To achieve this, weather code data and snow depth records from synoptic stations in the eastern half of the country were obtained from the Iranian Meteorological Organization for the statistical period of 1371-1400 (1992-2021), focusing on the months of October to March. Days with simultaneous snowfall covering more than 70% of the study area were identified as widespread snowfall events. For the synoptic-dynamic analysis of these events, a classification method utilizing cluster analysis was employed. Maps of representative days were generated, including variables such as atmospheric temperature, moisture flux, geopotential height, vorticity, front formation, jet stream location, omega index, and meridional and zonal wind data. Additionally, trend analysis was conducted using the Mann-Kendall test. The results revealed that three primary synoptic patterns are responsible for widespread snowfall in the study area. These patterns include: (1) high-pressure systems over Siberia and central Europe coupled with low-pressure systems over eastern Iran; (2) high-pressure systems over western Iran paired with low-pressure systems over Sudan; and (3) high-pressure systems over central Europe combined with low-pressure systems over eastern Iran and Afghanistan. In all patterns, the intensification of meridional flows in the westerly winds, along with the formation of high- and low-pressure centers, creates blocking conditions that disrupt the westerly flow and promote upward air motion. The concentration of negative omega fields and positive relative vorticity advection, coupled with the positioning of northeastern Iran in the left exit region of the Subtropical Jet Stream, contributes to significant atmospheric instability and widespread snowfall in the region. Furthermore, the trend analysis indicated that, although there is no statistically significant trend in the number of snowfall days in northeastern Iran, the overall number of snowfall days has decreased over time.
Full-Text [PDF 2579 kb]   (15 Downloads)    
Type of Study: Research | Subject: climatology

References
1. دوستان، رضا (1399)، الگوهای جوی بارش‌های شدید و فراگیر خراسان جنوبی، مجلّه جغرافیا و توسعه ناحیه ای، سال هجدهم، شماره ۱، شماره پیاپی ۳۴: ۱۹۹-۲۲۳. doi: 10.22067/geography.v18i1.84509
2. شرافت، مهدی، و فتح نیا، امان اله. (1398). پایش تغییرات فضایی-زمانی سطوح برفی زاگرس با استفاده از تصاویر NOAA-AVHRR. برنامه ریزی و آمایش فضا (مدرس علوم انسانی)، 23(2 )، 173-194. SID. https://sid.ir/paper/381073/fa
3. عزیزی، قاسم، رحیمی، مجتبی، محمدی، حسین و خوش اخلاق، فرامرز. (1396). تغییرات زمانی- مکانی پوشش برف دامنه‌های جنوبی البرز مرکزی. پژوهش های جغرافیای طبیعی، 49(3)، 381-393. doi: 10.22059/jphgr.2017.217393.1006943
4. علیجانی، بهلول (۱۳۹۶)، آب و هوای ایران. چاپ چهاردهم. تهران: انتشارات سمت.
5. فتاحی، ابراهیم، و مقیمی، شوکت. (1398). اثر تغییرات اقلیمی بر روند برف شمال غرب ایران. تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 19(54 )، 47-63. SID. https://sid.ir/paper/399630/fa
6. فلاحتی فاطمه، علیجانی بهلول، سلیقه محمد. (۱۳۹۶). بررسی تغییرات سطح پوشش برف در دهه های آینده با رویکرد مدیریت منابع آب (مطالعه موردی : حوضه آبخیز منتهی به سد امیرکبیر). فصلنامه علمی پژوهشی امداد و نجات. ۱۳۹۶; ۹ (۳) :۶۸-۷۹ URL: http://jorar.ir/article-1-476-fa.html
7. فهیمی نژاد، الهام، حجازی زاده، زهرا، علیجانی، بهلول، و ضیاییان، پرویز. (1391). تحلیل سینوپتیکی و فضایی توفان برف استان گیلان (فوریه 2005). جغرافیا و توسعه ناحیه‌ای، 10(19)، 281-302. SID. https://sid.ir/paper/99006/fa
8. کیخسروی کیانی، محمد صادق و مسعودیان، سید ابوالفضل. (1395). شناسایی وردش‌های مکانی روزهای برفپوشان در ایران زمین به کمک داده‌های دورسنجی. جغرافیا و مخاطرات محیطی، 5(1)، 69-86. doi: 10.22067/geo.v5i1.49715
9. میرموسوی، سیدحسین، و صبور، لیلا. (1393). پایش تغییرات پوشش برف با استفاده از تصاویر سنجنده مودیس در منطقه شمال غرب ایران. جغرافیا و توسعه، 12(35)، 181-199. SID. https://sid.ir/paper/77373/fa
10. Bai. L، Shi. C، Shi. Q، Li. L، Wu. J، Yang. Y،Sun. S، Zhang. F، Meng. J، (2019)، Change in the spatiotemporal pattern of snowfall during the cold season under climate change in a snow-dominated region of China، International Journal of ClimatologyVolume 39، Issue 15: 5702-5719. [DOI:10.1002/joc.6182]
11. Beniston M. (2006). Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia 562: 3-16. [DOI:10.1007/s10750-005-1802-0]
12. Beniston M، Farinotti D، Stoffel M، Andreassen LM، Coppola E، Eckert N، Fantini A، Giacona F، Hauck C، Huss M، Huwald H. (2018). The European mountain cryosphere: a review of its current state، trends، and future challenges. Cryosphere 12:759-794. [DOI:10.5194/tc-12-759-2018]
13. Birsan. M.V، Dumitrescu. A (2013)، Snow variability in Romania in connection to large-scale atmospheric circulation، International Journal of ClimatologyVolume 34، Issue 1: 134-144. [DOI:10.1002/joc.3671]
14. Brown. I. (2019). Snow cover duration and extent for Great Britain in a changing climate: Altitudinal variations and synoptic-scale influences، International Journal of ClimatologyVolume 39، Issue 12: 4611- 4626 [DOI:10.1002/joc.6090]
15. Clark. C. A، Ganesh. B. B، Elless. T. J، Lyza. A. W، Koning. D. M، Carne. A. R، Boney. H. A، Sink. A. M، Barrick. J. M، (2018)، Spatio-temporal November and March snowfall trends in the Lake Michigan region، International Journal of ClimatologyVolume 38، Issue 8: 3250-3263. [DOI:10.1002/joc.5498]
16. Cohen J. (1994). Snow cover and climate. Weather 49:150-156. [DOI:10.1002/j.1477-8696.1994.tb05997.x]
17. Diffenbaugh NS، Scherer M، Ashfaq M. (2013). Response of snow-dependent hydrologic extremes to continued global warming. Nature Climate Change 3: 379-384. [DOI:10.1038/nclimate1732] [PMID] []
18. Dyer. J. L، Mote. T. L. (2007)، Trends in snow ablation over North America، International Journal of ClimatologyVolume 27، Issue 6: 739-748. [DOI:10.1002/joc.1426]
19. Fontrodona Bach A، van der Schrier G، Melsen LA، Klein Tank AMG، Teuling AJ. (2018). Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophysical Research Letters 45: 312-319. [DOI:10.1029/2018GL079799]
20. Hall A. Endfield G. (2016). "Snow scenes": Exploring the role of memory and place in commemorating extreme winters. Weather Climate and Society 8:5-19. [DOI:10.1175/WCAS-D-15-0028.1]
21. Harrison SJ، Winterbottom SJ، Johnson RC. (2001). A preliminary assessment of the socio-economic and environmental impacts of recent changes in winter snow cover in Scotland، Scottish Geographical Journal 117: 297-312. [DOI:10.1080/00369220118737130]
22. Huang، X.، Deng، J.، Ma، X.، Wang، Y.، Feng، Q.، Hao، X.، Liang، T.، (2016). Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 10 (5)، 2453-2463. https://doi.org/10.5194/tc-10-2453-2016 [DOI:10.5194/tc-10-2453-2016.]
23. Jin. X، Ke. C.Q، Xu. Y.Y، Li. X.C. (2015). Spatial and temporal variations of snow cover in the Loess Plateau، China، International Journal of ClimatologyVolume 35، Issue 8: 4611-4626. [DOI:10.1002/joc.4086]
24. Jones CA، Davies SJ and Macdonald N (2012) Examining the social consequences of extreme weather: the outcomes of the 1946/1947 winter in upland Wales، UK. Climatic Change 113: 35-53. [DOI:10.1007/s10584-012-0413-9]
25. Kay AL. (2016). A review of snow in Britain: the historical picture and future projections. Progress in Physical Geography، 40: 676-698. [DOI:10.1177/0309133316650617]
26. Li .W، Qiu. B، Guo. W، Zhu1. Zh، Hsu. P. C. (2020)، Intraseasonal variability of Tibetan Plateau snow cover، International Journal of Climatology، 40، 3451-3466. [DOI:10.1002/joc.6407]
27. López.M. J . I، Soubeyroux. J. M، Gascoin.S، Alonso.G.E، Durán.G. N، Lafaysse. M، Vernay. M، Carmagnola. C، Morin. S. (2020). Long-term trends (1958-2017) in snow cover duration and depth in the Pyrenees. International Journal of ClimatologyVolume 40، Issue 14: 6122-6136. [DOI:10.1002/joc.6571]
28. Luomaranta. A، Aalto. J، Jylhä. K. (2019)، Snow cover trends in Finland over 1961-2014 based on gridded snow depth observations، International Journal of Climatology; 39:3147-3159. [DOI:10.1002/joc.6007]
29. Mudryk. L، Otín. S. M، Krinner. G، Ménégoz. M، Derksen. C، Vuilmet. B. C، Brady. M، Essery. R، (2020)، Historical Northern Hemisphere snow cover trends and projected changes in the CMIP-6 multi-model ensemble.The Cryosphere. Volume 14، issue 7: 2495-2514. [DOI:10.5194/tc-14-2495-2020]
30. Pomeroy JW، E Brun. (2001). Physical properties of snow. Snow Ecology، In: Jones HG، Pomeroy JW، Walker DA، Hoham RW. (eds) Snow Ecology. Cambridge University Press. pp45-126.
31. Ren، Y.، Lü، Y.، Comber، A.، Fu، B.، Harris، P.، Wu، L.، (2019). Spatially explicit simulation of land use/land cover changes: current coverage and future prospects. Earth Sci. Rev. 190، 398-415. [DOI:10.1016/j.earscirev.2019.01.001]
32. Sauter. T، Weitzenkamp. B، Schneider. C، (2010)، Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network، International Journal of ClimatologyVolume 30، Issue 15: 2330-2341. [DOI:10.1002/joc.2043]
33. Schlochtern MPM zu، Rixen C، Wipf S، Cornelissen JH. (2014). Management، winter climate and plant-soil feedbacks on ski slopes: a synthesis. Ecological Research 29: 583-592. [DOI:10.1007/s11284-014-1141-6]
34. Sönmez. I، Tekeli. A. E، Erdi. E، (2013)، Snow cover trend analysis using Interactive Multisensor Snow and Ice Mapping System data over Turkey، International Journal of ClimatologyVolume 34، Issue 7: 2349-2361. [DOI:10.1002/joc.3843]
35. Yang، M.، Wang، X.، Pang، G.، Wan، G.، Liu، Z.، (2019). The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth Sci.Rev. 190، 353-369. [DOI:10.1016/j.earscirev.2018.12.018]
36. Youa. Q، Wub. T، Shenb. L، Pepinc. N، Zhangd. L، Jiangd. Z، Wua. Z، Kange. S، Agha. K. A. (2020)، Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system، Earth-Science Reviews، Volume 201، 1-13. [DOI:10.1016/j.earscirev.2019.103043]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)