تحلیل مورفولوژیکی مجري رودخانه مهاباد و تأثیر احداث سد بر آن

پدیده مقاله: ۱۷/۱۲/۱۳۹۲
صفحه: ۱۵۵ - ۱۷۲

هادی نیری: استادیار جغرافیای طبیعی، گروه زئومورفولوژی، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران
Email: nayyerihadi@yahoo.com

چکیده
موضوع موردطالعه در این پژوهش، تحلیل شکل مجار در حوضه ابیه رودخانه مهاباد است. این منطقه در جنوب دریاچه ارومیه قرار دارد. تغییرات سریع شکل مجاری از ویژگی‌های مهم این رودخانه است که بررسی این تغییرات جهت اجرای بروزهای عمرانی لازم است. برای این منظور تغییرات مورفولوژیکی مجاری رودخانه در زمان‌های مختلف با استفاده از عکس‌های هواپی و تصاویر ماهواره‌ای دوره‌های مختلف مشخص شد، سپس ارتباط بین متغیرهای مؤثر بر شکل مجار از حاله‌بی، شبی، توان جریان، میزان رس کرانه‌ها و پهنای بستر با تغییرات مشاهده‌شده مورد تحلیل واقع گردید. نتایج نشان داد که مواد درشت‌شده موجود در کرانه‌ها همبرل با افزایش نسبت پهنای بستر سبب شکل‌گیری مجاری گیسویی شده است. بهمترین پایایی دست بعد از محدوده گیسویی، رودخانه به شکل سیستمی تغییر پیدا می‌کند. به نظر می‌رسد افزایش میزان رس که سبب مقاومت‌کردن کرانه‌ها می‌گردد، همراه با افزایش بی‌عامل این تغییر باشد. در حفاظت سد مهاباد در بالادست و سد کچک اطرافی در پایین دست جریان، رودخانه به شکل آد تغییر می‌یابد مقاپس‌های هواپی ساله‌ای نشان داده این نوع مجاری در دوره کنونی توسعه پیدا کرده‌اند. به نظر می‌رسد ایجاد سد سبب کاهش دیپ اوغ و نیشته شدن رسوبات در داخل مجاری شده که درنتیجه این امر شرایط لازم برای مجاری آد فراهم آمده است.

کلید واژگان: شکل مجار، زئومورفولوژی، رودخانه‌ای، مجاری آد، احداث سد، رودخانه مهاباد.
در صدها اخیر رشد اقتصادی و افزایش جمعیت نیاز به آب و سازه‌ای بیشتر و تغییرات رودخانه‌ها را سبب کرده است که این فراوانی‌ای که در دیگر متعادل بودن رودخانه‌ها وجود داشته و به این معنی است که این فراوانی‌ای که به این معنی است که در دیگر مناطق و سیستمی که متعادل بودن نابود شده. همچنین این مشکلات از این سوپرکانی و تکامل رودخانه‌ها منشاً می‌گیرد بنابراین اگرچه چنین محیطی‌ای برای اجرای هرگونه عملیات لازم است و به همین‌طور که هزاره‌ها در سال 1973 نوشته‌ند (نقل از کنال فه و همکاران)

مقدمه

روخانه‌هایی که به هم پیوستن شاخه بیتاس در شرق و شاخه کوتر در غرب شکل گرفته است، بر اساس تصویری ماهواره‌ای این رودخانه دارای تغییر شکل زیادی است که در دیگر رویشخانه‌ها حضور دریچه ارومیه کمتر دیده می‌شود (نبری، 1389). شاخه بیتاس این رویشخانه از ارتفاعات 2000 متری کوه‌های شاه گرچی‌گرچی گرفته‌گر ابتدا دارای مسیر سیستمی و سپس به شکل گیسوی‌ی می‌شود با دریافتن شاخه قوی در جهت شمالی حرکت و به دریاچه سد مهاباد می‌رود. شاخه کوتر در سمت غربی حوضه از ارتفاعات 750 متری حوضه سرچشمه می‌گردد. این شاخه به شکل سیستمی تا انتقال به شاخه گیسوی حرکت می‌کند از این محدوده به بعد آب‌مانند شروع و مجرای آن با سیستم گیسوی شکل تا روستای کوتر جریان بیدار می‌کند. در پایان از سد مخزنی مهاباد، شکل مجزا از سیستمی خارج و در محدوده کوچکی در سیر خود به دو تا سه شاخه که به‌وسیله جاز این شاخه به موجبیت سیستمی، بندی می‌شود. در ادامه مسیر در نزدیک ارتفاعات 5 متری جنگ جنگ شاخه از بین مروی و دوباره به شاخه اصلی متصل می‌گردد و آن مصد ناتوانی سیستمی نک مرا شکل غلام رودخانه می‌شود.

بر روی این رویشخانه یک سد مخزنی در محل اتصال دو شاخه بیتاس و کوتر بنا است 1346 ایجاد شده مهارت سد دیگری در پایین دست سد مهاباد جهت انحراف آب به مجزای ابزاری ساخته‌شد است. این بزرگ‌ی‌های مجارا تأثیر سد ری سرجا آن‌ها بدون مطالعه باند‌ای است. محققان زیادی به بررسی مورفولوژی رودخانه‌ی پر ارجای بیانی تشخیصات مختلط و صحیح‌های زیادی در مورد فراوانی‌های مؤثر بر آن‌ها ارائه کرده‌اند. برای مثال تأریح و لوله‌های 1957

1. Kondolf
2. Shakhghol
3. Ghoreh
4. Pengwen
5. Agrighash
تحلیل مورفولوژیکی مجاری رودخانه مهاباد و تأثیر احداث سد بر آن

مجری رودخانه‌ای را به سه دسته متمایز، منفردی و گیسویی تقسیم کردن (بایس، ۱۳۸۷): عینک‌ها و انواع مختلفی از مجاری ترکیب شوند. بر روی اینکه چه منقارهایی با یکدیگر م丛林 نشاندهنده است، بیشتر تحقیقات بین ارتباط بین شیب و دیب تأکید کرده‌اند. ریچارد(۱۹۸۰) شکل‌گیری مجري منجاوت را ناشی از دیب، شیب دره، اندوزه و ارتباط بین سطح موجب مراقبه دیگری و ارتباط با این مهارت سد داشته است. نانویون(۱۹۸۹:۲۸۹) توان جریان را ناشی از دو متغیر فوق دانست که به نظر می‌رسد با مراجعه به منابع هیدرولیکی و طبیعی شکل رودخانه و عملکرد آنها است.

عوامل نسبی از جمله سدهای محلولی میزان رسوبات و چگونگی ابعاد مجاری به مقطع را تغییر می‌دهند. به این ترتیب بر شکل مجارا تأثیر می‌گذارند. برای نمونه، اسنادی و همکاران (۱۹۸۹:۱۹۸۶) با بررسی رودخانه میلک در ایران این رودخانه به صورت کاهش میزان جابجایی پهنا به احداث سد واکنش نشان داده است. همکاران و همکاران (۱۹۹۸) نشان دادند اثرات سد‌ها روی رودخانه‌های بزرگ به صورت تغییر شکل، ظاهر می‌سای و تغییرات مورفولوژیکی جریان به فاکتورهای تغییرات دیب مجاری، شیب مجاری و شیب مداری سطح مقطع جریان و زمان تأکید کرده‌اند (اساسی و همکاران، ۲۰۰۰:۱۹۸۶، ماسکاکاکی و همکاران، ۲۰۰۹:۱۹۸۶، رضایی. مدقم و همکاران، ۱۳۹۱).

خلاصه مطالعات در ارتباط با این مسائل سبب شده که تغییرات شکل مجارا و دینامیک رودخانه مهاباد روشن نبوده و جنبه‌های زیر از طبیعت این رودخانه بدن بررسی نموده می‌ماند:

- تا اکنون مطالعات عمومی که باعث مورفولوژی منجاوت مجارا شده، صورت نگرفته است و مشخص نیست که تغییرات مورفولوژی مجارا معلول چه عاملی است.
- این رودخانه از دیدگاه زمین‌شناسی بدون بررسی دقیق‌تره که این سبب عدم درک کنش‌ها و واکنش‌ها در این رودخانه شده است.

این تحقیق به‌همراه با بهبود ابزار اندازه‌گیری و فهم عوامل شکل‌گیری اشکال مجارا در حوزه آبریز رودخانه مهاباد صورت گرفته است.

1. Braided
2. Anabraching
3. Brice
4. Richard
5. Bradly and smith
6. Milk
7. Friedman et al
موقعیت جغرافیایی محدوده موردطالعه

حوضه رودخانه مهاباد در جنوب دریاچه ارومیه، در "۹۰° - ۹۵° ۵۰" طول شرقی و "۳۵° - ۴۳° ۵۰" عرض شمالی واقع شده است (شکل ۱).

این حوضه در شمال با دریاچه ارومیه هم‌مرز است که رودخانه مهاباد پس از عبور از روستاهای دارک و گرگ‌بک قبا وارد آن می‌شود. حوضه آبریز رودخانه مهاباد از دو واحد توپوگرافی تشکیل شده است. قسمت جنوبی آن کوهستان و قسمت شمالی آن دشت است. سازندگی در قسمت بالایی این حوضه که رودخانه روی آن جریان دارد عمداً شیست، کوارتزیت و آهک‌های کرناهی می‌باشد اما در محدوده دشت این سازندگان نابدید و رسوبات ایلیت-میوسن جانشین آن می‌گردد. توزیع این سازندگان در محدوده دشت به‌وسیله آب‌فرآوری مجزا می‌گردد (شکل ۲). از دیدگاه زمین‌ساختی این حوضه در حداصل سیستم خطواره‌های ارومیه که دریاچه ارومیه را احاطه نموده و در زون دگرگونی سندج _ سیرجان واقع شده است (شرکت مشاور الکتروپروژکت، ۱۹۶۴:۱۸).

1. Elektroprojekt Consulting Engineers - ZAGREB

شکل (۱). موقعیت حوضه آبریز رودخانه مهاباد.
روش کار

نخست یک بار در هدایت مقدماتی برای مشاهده طبیعت و عملکرد کلی سیستم رودخانه انجام شده.

مرحله دوم بار برداشته منطقه برای برداشت نقاط زمینی جهت زمین مرجه کردن عکس‌ها، نقشه‌ها و تصاویر ماهواره‌ای صورت گرفته که شکل رودخانه با کاربردی آن‌ها مورد بررسی قرار گرفته است.

واقع شد. عکس‌ها و نقشه‌ها اسناد بر اساس سیستم UTM، زون 18 زمین مرجه شده.

1: نحوه محاسبه شبیه‌سازی و استخراج نیم‌مرخ طولی از مدل ارتفاعی رقومی

در این پژوهش از مدل ارتفاعی رقومی استفاده برای استخراج نیم‌مرخ طولی و شبیه مجار استفاده شده است. آنالیز با به‌کارگیری برنامه‌های جانبایی از ارگه مدل هیدروژئوپیک و آنالیز مکانیک 3D در دو مرحله صورت گرفته است.

1. Extension
2. Spatial Analyst
2: استخراج توان جریان در امتیاد نیم‌خ طولی
با توجه به اهمیت توان جریان در سیستم رودخانه‌ای تلاش شده تا توزیع محتوم آن بر روی نیم‌خ طولی به دست آید که بصورت زیر تعریف می‌شود (یان و سنگ، 1379):
\[\Omega = \gamma \frac{Q.S}{W} \]
(1)
در اینجا لازمن مخصوصاب، Q، شبیه به W، شیب تا و S، در نواری که ایستگاه هیدرومتری کافی وجود دارد، سماحت وجود آریز به عناوین جانشینی برای این در معادله توان جریان مورد استفاده واقع می‌گردد که بصورت زیر می‌باشد:
\[Q = a.A^b \]
(2)
در اینجا A، مساحت حوضه‌های مشترک بر حسب کیلومتری و پ شوا و ضاربی مستند پس توان جریان می‌تواند بصورت زیر نوشت شود (ویکرتن و همکاران، 1391):
\[\Omega = \gamma (a.A^b.S) \frac{1}{W} \]
(3)
3: روش استخراج میزان رس کرانه‌ها
زمین‌سنگ‌ها و گرمه‌های این میزان رس را در امتیاد مجار به‌صورت پیوسته نشان می‌دهند و سپس شده که در این تحقیق میزان رس کرانه‌ها از آن‌ها به شرح زیر به دست آورده شدند:
\[\text{اف. تهیه داده به این تحقیق از تحقیق ماهورای سنجش ETM} \]
۲ سال ۲۰۰۱ و ۲۰۰۶ استفاده‌شده است. حریم رودخانه به میزان ۲۰۰ متر ترسیم و به‌عنوان ماسک به کار گرفته شد.
ب) تحقیقات ردیو‌پتری: برای تصخیات انمسفری تصادف از مدت چاپ‌های استفاده‌شده است و ارزش پیکسل‌های تیره در تصویر کاهش داده‌شده‌اند تا فرآیند از صحت بالایی برخوردار باشد.
چ: آشارك‌سازی: جهت آشكرسازی پیدا‌ها از روش نسبت‌گیری بانده استفاده‌شده است این روش می‌تواند برای پیش‌بینی اختلاف طبیعی بین بانده استفاده شود (آیرا، ۲۰۰۵). داده‌های

1. Spread sheet
2. Coverages
3. Abera
تحلیل مورفولوژیکی مجرای رودخانه مهاباد و تأثیر احداث سد بر آن

در بند ۵ دارای خداحافظی اعمالگاه و بند ۷ همین داده‌ها دارای بیشترین میزان جذب می‌باشد. بنابراین نسبت این باندها نواحی رسمی را با حداکثر پراکندگی نشان می‌دهند.

د: خورشید: نقشه پراکندگی میزان رس تغییرات شکل مجرای همبودیانی که تا تأثیر این منجر بر روی تغییرات به دست آید، نقشه خروجی با نتایج حاصل از لگه‌گرا زمین‌شناسی نهایی شده است.

پس از نمایه شرکت آب منطقه برنی صحت سنجی مقایسه شدند.

نتایج

قبل از بررسی عوامل مؤثر در شکل متفاوت مجرا، انواع مجرا شناسایی شد در محدوده مورد مطالعه با تعاریف ارائه شده از مجاری انطباق داده شد.

الف) مجرای آد: در سال ۱۷۶۳ و چارجه (۱۹۸۳) رودخانه‌های دارای سیستم چند مجرا با توان بالا را در طبقه‌ای تحت عنوان رودخانه‌های سرگردان با بستر گراوی از بقیه رودخانه‌ها جدا گردند (نقل از کلمانت، ۱۹۹:۲). این ایده اساسی برای واژه آد، ارائه شده توسط شوم (۲۰۱۹:۱۸۵) گردید که شاید تمام رودخانه‌ها با ویژگی فوق می‌شود. ناشون و نایتون (۲۰۱۹:۱۸۵) ادارا به عنوان سیستمی می‌باشد که جز ایران در آنها بوشیله پوشش گیاهی پایدار شده‌اند و هدایت می‌کند جریان در دی‌پای بعفترک خانها، تعریف کردن. مجرای که این جزایر در آنها عاملی، مانند دارد گیسویی، متندری و یا مستقیم باشد. رودخانه‌های پایدار در پایینتر از سطح مهاباد و بالاتر از سد انرژی دارای این ویژگی است و می‌تواند در طبقه‌ای آدا قرار گیرد. جزایری که در بین سری دیده می‌شود و پوشش گیاهی که روی آنها رشد کرده‌اند، نشان می‌دهد، بنابراین این استفاده‌مندی در این تحقیق دارای مفهوم زیر است. سیستمی می‌باشد که جزایر این چند گروه با آب شتاب‌های به هم که به‌طور کلی بیان شده‌اند و جریان در دی‌پای بعفترک خانها، تعریف کنند، که از تعاریف برایق و شوم (۱۹۸۵) و ناشون و نایتون (۱۹۸۵) اقتباس شده است و طبیعی‌ترهای آنها در مجموع شرایط لازم برای این نوع مجرای موارد از:

ز) زیر جزایر ناشی از وجود منبع

ب) مجرای گیسوی: به دیده گیسوی بک و نیکاریت تقریباً عادلی بین متغیرهای دی‌پای جریان، بارکف و شیب بستر است (نالوری، ۳۷۲:۱۳۷۵) در این نوع رودخانه‌ها در پی هر سیلابی، رودخانه

1. Church
2. Wandering gravel – beds rivers
تشریح تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷، تابستان ۹۴

به چند شاخه تقسیم می‌شوند که وضعیت یافدارها و ناتوانی‌های تدارک و جهت جریان و موقعیت گزاره‌ها و یارها و عرض و ضعف رودخانه‌ها به‌دست می‌آید. در معرض تغییر و تحول می‌باشد (یاسی، ۱۳۸۷: ۳۵). تقسیم ۴۶ کیلومتر از شاخه کوتر در حداقل ۱۰ کیلومتر از خط ارسا تا ۶۴ کیلومتری پایین‌تر از آن و ۱۵ کیلومتر از شاخه بیطاس از ۲۰ کیلومتری پایین‌تر از خط ارسا تا ۳۵ کیلومتری تقریباً مشابهی تعیین ارتقاء‌های این نوع مرجا می‌باشد. به‌نتای محدوده گیسوی، متفاوت و در نوع و تعداد تغییرات گیسوی در پهنای بستر ۴ است. مجازی دارای خصوصیات ویژه‌ای هستند، روابط کرانه‌ها این قسمت از مرجا از نوع گروهی است (شکل ۳). در این محدوده جریان‌های با دبی بالا تمام بستر را اشغال می‌کند. بوشگان گاهی بر روی بعضی از بارهای موقعی به‌صورت پراکنده دیده می‌شوند به‌نظر می‌رسد این‌ها جزئی از بستر قدیمی باشند که بوسیله چرخان با فشار سال‌ها زیرآب می‌روند. در محدوده‌های که ارتفاع کرانه مشخص نبوده، از طریق این جزئی پهنای بستر برآورد شده است.

شکل (۲). تصویری از محدوده گیسوی (الف) و کرانه‌های آن (ب) در نزدیکی روستای کوتر (ج) محراب سینوسی: بستر رودخانه‌ها معمولاً بی‌چیده‌ها منظم با نهایت‌های دارند که این بی‌چیده‌ها با در داخل دره و یا در جریان‌های رسوبی واقع‌شده‌اند. محراب رودخانه‌های مشابه در قسمتی از مسیر دارای این ویژگی است که مناطق آن رودخانه مناطقی اطلاق گردید. مناطق ار اساس موقعیت به دو دسته تقسیم می‌شوند:

• مناطقی درون‌دریا، این نوع مناطق در بالای سد رودخانه در هر دو دشت و رودخانه در نه در محدوده‌های که رودخانه در دره عمیق جاری است (شکل گرفته‌اند. در هر دو دشت مهم و اصلی بی‌چیده و کوتر
تحلیل مورفولوژی‌ی مجرای رودخانه مهاباد و تأثیر احذاث عذث آی

در قسمت سرچشمه این نوع منادر دیده می‌شود. در شاخه بیشتر ۲۰ کیلومتر و در شاخه
کوترا ۱۰ کیلومتر از طول مجازا شانه این شکل از مجرای است.

متاندر جلکه رویه این نوع خمیدگی در قسمت پایین دست و در محل ناقص دو رودخانه
بعد از سه انحرافی مهاباد دیده می‌شود و تا انتهای جریان آدامه پاید می‌کند. حدود
۴۰ کیلومتر
از طول مجازا را شامل می‌گردد. کرانها در این محدوده عمدتاً از رسوبات ریزدان تشکیل شده
است که به همراه با یوکا و دیگر گیاهانی که در نقاط بخشی حاوی رسوبات می‌گردند.

پیچان رودهای مشاهده شده در رودخانه مهاباد معمولاً یک پیچان رویه مسن‌هاین. در
طریق زیادی که شوم از رودخانه‌ها انجام داده است. خمیدگی‌های رودخانه‌های طبیعی که
غلبه با یار معلق و پایداری جانبی است، قرار می‌گیرند. عمیق از در این محدوده ۴ تا ۵/۵ متر و
متوسط بهانه ۴۰ متر می‌رسد. میزان سیستونه آن ۱/۴ می‌باشد.

بررسی عوامل مؤثر بر اشکال متفاوت مجارا

شکل ظاهری و رفرن رودخانه متأثر از توان جریان و مقاومت رسوبات در مقابل فرسایش
است. با توجه به اهمیت این دو فاکتور در سیستم رودخانه‌ای تلاقی شده تا میزان توان جریان
از طریق توزیع می‌شود و مقاومت رسوبات بر اساس تفسیر تغییرات ماهوراهای به دست آید که
مرحل انجام کار تعین نیروی چکه‌های فوق به شرح زیر تشکیل‌شده است:

• هندسه پنده و شبی بستر
• تجربه تحمل ویژگی‌های هیدرولیکی جریان از جمله اندازه‌های بی‌دی و توان جریان
• بررسی ترکیب کرانه‌ها و رسوبات بستر متغیر مؤثر بر تغییرات شکل بستر
• مشناسی تغییرات حادثه‌های در هر یک از متغیرها و شکل رودخانه و تفسیر نتایج آنها

اندازه‌گیری پهنای بستر

ولمن و مبل در سال ۱۹۶۰ به این نتیجه رسیدند که اندازه‌گیری پهنای بستر در هنگام
بیشترین دیگر غالب آنهم رژیم‌های ویژه‌ای جریان را نشان می‌دهد (نقاط از ناوند، ۱۹۷۸:۱۳۷). در
ابزار تحقیق از روش پنده در موقع بالاتر انتخاب آب استفاده شده است که از طریق کرانه‌ها
و پوشش گیاهی که در کنار آنها رشد کرده، مشخص گشت است در امتداد مسیر در هر
۱۰۰۰ متر، پهنای بستر از عمق‌های هموار استخراج شده است. متوسط پهنای بستر در
محدوده سیستونه در هر شاخه کوترا ۳۳ متر و در شاخه بیطاس ۴۳ متر است. در محدوده
گیسونی این پهنای افزایش زیادی پیدا می‌کند. به‌طوری که در شاخه کوترا به ۱۰۴ متر و در
شاخه بیطاس به ۱۵۵ متر می‌رسد. مجدداً پهنای بستر در محدوده سیستونه گیلگاهی به

Downloaded from jgs.khu.ac.ir at 5:05 IRST on Friday December 7th 2018
متوسط 31 متر کاهش می‌یابد. با افزایش پهنای در هر دوشاخه، محدوده گیسوی شروع می‌شود و با کاهش مجدد پهنای پیش‌تر به توجه به سیستمی‌شکل تغییر می‌یابد (شکل 4).

شیب مجار
شیب در مقدار توان جریان و شکل مجار به‌عنوان یک متغیر دارای اهمیت است. طبق بررسی‌های ویکنتر و همکاران (2006) مسافت کوتاه رودخانه‌های نزدیک ویژگی‌های رودخانه متوسط ویژگی مجار را نشان می‌دهد. به همین علت در این بررسی متوسط شیب مجار برای محدوده‌های یک کیلومتر محاسبه‌شده است. تا ویژگی متوسط مجار مورد ملاحظه قرار گرفت. برای به دست آوردن شیب مجار نقشه‌های توپوگرافی دارای میزان 1:1000 که با استفاده از دوربین نقشه- برداری تهیه شده‌بود استفاده شد. اما این نقشه‌ها تنها محدوده دشت را پوشش می‌دادند. برای محدوده بالادست سد نقشه‌های 1:5000 که برای احداث سد تهیه شده بودند، مورد استفاده

شکل (4)، تغییرات پهنای انجام آن با تغییرات شکل مجار (عکس‌های هوایی، 1385)
تحليل مورفولوجي مجراه رودخانه مهاباد و تأثير احداث سد بر آن

قرار گرفت. تنا ارتفاع محدوده کمی از منطقه از مدل ارتفاعی رقمی 90 استخراج شده است. تمامی این نقشه‌ها در محیط GIS باهم تلفیق شدند و برای شیب به کار رفتند.

انطباق شکل مجراه با تغییرات شیب نشان دهنده آن است که بعد از هر چاششی که در شیب انجام می‌گردد رودخانه شکل گیسویی پیدا می‌کند. این ارتباط به‌وجود در شاخه کوتر آشکارتر است در این شاخه چهار بار افزایش و کاهش متغیر شیب وجود دارد. در هر چهار مورد به دنبال کاهش شیب رسویت شیب - ماسه‌ای نهشت شده و مجرا گیسویی می‌شود. در شاخه بیطنی این ارتباط کمتر است و در اولین کاهش شیب شکل رودخانه به حالت سیونسی دردای باقی می‌ماند. در این شاخه در محدوده گیسویی سه محدوده تمرکز نیمکت شتی - ماسه‌ای وجود دارد که در مرکز اول از تغییرات شیب تبعیت زیادی نمی‌کند. محدوده سوم که در
چشم‌انداز مورفولوژیکی این شاخه مشخص تر است دقت‌آوردنی به دنبال کاهش شیب در این شاخه بیشتر می‌گردد. به دنبال کاهش متوالی شیب رودخانه به شکل آن تبدیل و در انتها که شیب عظیم کاهش می‌یابد رودخانه به شکل سینوسی تغییر می‌یابد. تبدیل محدوده گیسوی به سینوسی و آذا با شیب شکستگی شیب همراه است (شکل 5).

تجزیه و تحلیل ویژگی‌های هیدرولیکی جریان

داده‌های حاصل از دی واقعی امتداد رودخانه مهاباد کافی نبودند به همین خاطر به تخمین دی در امتداد مسیر رودخانه با روش انتقال از ایستگاه همباز پرداخته و از مساحت خرابه ای بر عهده جانشینی برای دی انتقال شد. روش جاسنی۱ که بر اساس علم کردن حیوبها مشابه استوار است (عکس ۶۲:۱۳۸۳۹:۱۳۸۱) در اینجا به کار گرفته شد. برای به دست ارائه شده.
تحلیل مورفولوژیکی مجاری رودخانه مهاباد و تأثیر احداث سد بر آن

آوردن چندین رابطه برای حوضه مهاباد از استحکام جنوب دریاچه ارومیه با امروز مشترک
۲۰ ساله استفاده گردید. بعد از تکمیل به روش منحنی مجموع، معادله آن بهصورت زیر برآورد
شد:

\[Q = 0.214A^{0.8515} \]

دبی نیز به‌تازه از مساحت برای هر ۱۰۰۰ متر از طول مجار محاسبه شده است. دبی
محاسبه شده بهصورت پیوسته بوده با تغییرات مورفولوژی بستر اطمینان داده شد (شکل ۶).

نتایج توان جریان در امتداد نیم‌مرخ طولی رودخانه

توان جریان نشان‌دهنده توانایی یک رودخانه برای عملکرد زئومورفیک است. برای محاسبه آن،
طول مجار در سراسر نیم‌مرخ طولی رودخانه با استناد تایب باشند (ویرکنت و همکاران،
۲۰۰۶:۳۰۰۲). برای این منظور توان جریان در هر ۱۰۰۰ متر محاسبه شد، سپس نتایج حاصل از

\[\text{شکل (۷)} \] تغییرات توان جریان و اطمینان آن با تغییرات شکل مجارا.
آن با تغییرات مورفولوژی که به‌صورت پیوسته بوده بر روی پل‌های ترسیم شده، همان طور که در شکل ۶ دیده می‌شود با کاهش توان جریان در هر دو شاخه به‌ویژه شاخه کوچک شکل گیسویی غالب می‌گردد. در محدوده سیستمی جلگه‌ای توان جریان نسبت به محدوده گیسویی کاهش زیادی ندارد و کمترین توان جریان منطقه با انتهای محدوده گیسویی است. در شاخه کوچک در چهار منطقه کاهش توان دیده می‌شود که در هر چهار مورد روی شاخه به شکل گیسویی تغییرات آن است. در شاخه بیشتر با استناد اولین محدوده کاهش توان جریان در محدوده- هالیی که جریان کاهش می‌یابد رودخانه شکل گیسویی پیدا می‌کند.

ترکیب کرانه‌ها: از سد مهاباد تا دریاچه ارومیه که شامل نهشت‌های دوران چهارم هست در امتداد کرانه مقدار رس استخراج گردیده نمایانه شد. برای به این منظور استفاده شد. ER maper برای نقشه برآوردگی میزان رس در کرانه‌های رودخانه مهاباد

شکل (۶). نقشه برآوردگی میزان رس در کرانه‌های رودخانه مهاباد
تحلیل مورفولوژیکی مجزای رودخانه‌های مهاباد و تأثیر احذاف شربت‌های منطقه‌ای 614

1. Robert Ettema
2. Hey
شماره ۳۲-نشریه تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۲-تایبادان۹۴

تشییع رودخانه‌ها و افزایش و سبب کاهش می‌باشد و به کمتر از یک‌یکی محدوده گیسویی می‌رسد.

در این محدوده از سوی کاهش ایجادی زرات و نهنگ‌های شنی مواد در بالا‌وپایین سبب می‌شود انرژی که به‌صورت حرارتکار می‌شود باقی مانده از طرف دیگر به کمی از فاکتورهای مؤثر در توان جریان است. افزایش پیدا می‌کند در چنین شرایطی رودخانه باقی به حالت گیسویی باقی می‌ماند اما رودخانه روستایی را که در محدوده طلایی حلم کرده، در بالای است. تغییرات سطحی است و مواد درشت‌دانه به منطقه سینوسی منتقل می‌شود. از طرفی وجود رسیتید و کاهش فرآیند، افزایش سبب مقاومت کردن‌ها و مانع افزایش نسبت یک‌پنجم عمق که وزیگی‌های لازم ایجاد گیسویی می‌باشد. شده است. بر این اساس نشان دهنده می‌باشد رویداد رودخانه در این محدوده برای کاهش اثری (توان)، نشان‌کننده به شکل سینوسی ظاهرگردد.

تحلیل شکل‌گیری مجرا آدا و جزایر ثابت

تمام رودخانه‌ها دارای تاریخ تحول هستند برای فهم شکل آنها با پیش‌نگری دریافت رودخانه‌های به‌طوری‌که ویژگی‌های ویژه این سطح داشته است و چه چیزی باقی مانده از تاریخ قبیل که هنوز بر روی سیستم خود تأثیر می‌گذارد (ناتن و ناتون، ۱۹۹۶:۱۲۰۰۰۰). با علت بر اینکه دو زیر حوضه اصلی کانتو و بیکاس در محل ورود به دشت به هم وصل می‌شوند که درواقع محل تمرکز اغلب آب‌های حوضه می‌باشد است. استفاده زیادی برای وقوع بارندگی و وجود دارد. با احتمال ساده، طغیان‌های رودخانه می‌باشد که همه‌ساله به وقوع می‌پوست کنترل شده است (تربیت، ۱۳۷۶).

بررسی مطالعات جغرافیایی (۱۳۸۱) روابط زیاد بین همکارانی که در روی سبب شده است که می‌تواند ارتباط با تحلیل ویژگی‌های طبیعی می‌باشد در دهه آخر باران و تغییر کاربری افزایش یافته است. عدم ترین منابع رژیم‌های اسرافی ممکن است گزارش نشان‌دهنده تغییرات (تربیت، ۱۳۷۶: طالب‌پور اصل، ۱۳۸۴:۹۱۹:۱۲۸۴). مورد از نظر این پژوهش پیشنهادی یکی از سبب شرط لازم برای ماجراجد افتادن آن افزایش یافته است. شرط لازم برای ماجراجد نوع آدا را فراهم آورده است و با فراوان سیلاب از سوی شرط لازم برای پیمان‌های مسجدی که موجب شده در میانه بستر رسواد تغییرات شوند که نهایتا می‌توانند تنگر به شکل گیری جزایر گردند.

فراهم می‌آورند از سوی دیگر صورت‌پراکندن لازم برای شکل‌گیری جزایر را فراهم می‌کند اما چه

1 .Slogh
تعلیم مورفولوژیکی مجرای رودخانه مهاباد و تأثیر احذاث سد بر آن

عملی بنا بر شده تجزیه در این محدوده آذا به صورت بسیار محدود باشد و چه تغییری در رودخانه صورت گرفته که سبب تشكل و تسریع این نوع مجاری گشت است؟ ناپندی و فایلو (1994) تأکید کرديند که یکی از عوامل شکل‌گیری این مجاری مسود شدن مجرا می‌باشد. به نظر می‌رسد که در مجرا رودخانه مهاباد احذاث سد چنین نقضی را ایفا می‌نماید. برگشت آب ناشی از احذاث سد انحرافی سبب کاهش توان جریان شده است که با تراکم بار رسوبی همراه بوده است زیرا توانایی برای حمل رسوبات کاهش می‌یابد بنابراین به‌طور تدریجی رودخانه با پیوست قسمتی از رسوبات را تنشین نماید تنشین شدن رسوبات در داخل مجرا بزرگ ناشی از سیلان‌های گذشته با توانیلی رودخانه به کاناله‌های شدن هم‌اره است که عامل شکل‌گیری مجرا به شکل آن می‌باشد.

بر اساس داده‌ها فوق چنین استنادی می‌شود که قبل از احذاث سد، جریان با دبی بالا از رودخانه عبرت کرده است که سبب شکل‌گیری بستر با پهنای زیاد شده است. از این‌جاه تاکننده دبی صورت نمی‌گرفت جریان در دبی‌های بالا از بستر خارج و بر روی کرانه‌ها و دشت‌ها جریان پیدا می‌گرد باعث بر معلق از بستر خارج می‌شود و وجود رس زیاد در بالای کرانه‌ها (شکل 4) به‌نظر می‌رسد ناشی از این عملی باشد. بعد از احذاث سد مهاباد دی کنترل شده و دبی‌های مکرر قسمت (شکل 9) کاهش پیدا کرده است درناوینه از طرفی قسمت‌های از بستر چه قیل‌های بوسیله آب اشغال می‌شود بوسیله رسوب اشغال گسترش است از سوی دیگر با توجه به اینکه جریان از کرانه‌ها خارج شده است رسوبات حمل شده بوسیله آن در بین دو کرانه بر جریان گذشته این سد انحرافی نیز که در پایین دست سد مخزنی ایجادشده با پراگش آب و ایجاد مانع به تسریع رسوب رودخانه که از سد مخزنی عبرت نموده، کمک کرده است شکل‌گیری جزایر بزرگی در نزدیکی سد انحرافی نشان‌دهنده نقص آن به‌عنوان یک عامل مهم می‌باشد.

![شکل 9. میزان دبی ورودی و خروجی سد](image-url)
عکس‌هایی از گذشته‌ای اطلاعات حسی از تجول مناطق فراموش می‌آورند به همین خاطر از
آن‌ها برای بررسی استفاده شد. در این عکس‌ها محدوده‌ای که اکنون به شکل آدا است (شکل
10 ب) دارای رسوایی درشت‌داران بود با این‌که شکل گیری آدا معلول تشكل سد می‌باشد.

ب
شکل (10) (الف) تصویر منطقه مناندری و (ب) عکس‌های سال 1346 محدوده‌ای از مجاها که در حال
حاضر به شکل آدا تبدیل شده است. مسیرهای محدوده‌سی را در تصویر نشان می‌دهد.

تحقیقات صویر و تحقیقات سیستم جدید مبرا تکامل و شکل‌گیری آن‌ها را
ناشی از فرآیند جریانی و جدایتهای داشته‌اند. تاکنون (1974-1985) آدا را
عمدتاً ناشی از فرآیند جدایتهای و ایجاد مبراهای جدید در داخل دشت‌ها وجود داشته‌اند
که در بعضی از موارد به‌طور عمومی بزرگ‌تر با ارتقاء دشت سبلانه به‌خاطر برای سببی که پرتر
گیاهان داخل مجاوا راسب شده‌اند. توضیح به این می‌کنند (شکل 11). تجول و گسترش جزایر
نیشابره به اینکه که در دشت مهاباد فرآیند جدایی داشته‌اند نظر به نیز سد نشسته باشد و
مجاری ناشی از تغییرات کرائه‌های مجاوا و اب‌و‌رسوب در داخل مجاوا باشد.

شکل (11). پوشش گیاهی منوایی و منفعت بر روی جزایر

تشریح تحقیقات کاربردی علوم جغرافیایی سال 1373، شماره 27. تایستان 94
تحلیل مورفولوژیکی مجاری رودخانه مهاباد و تأثیر احذاث عذ ثز آی

ارزیابی رودخانه مهاباد بر اساس طرح ناسون و نایتون

ناتیبون و ناسون (۱۹۶۳:۱۲۵۱) بر اساس توان جریان، میزان بار بستری، اندازه ذرات کرانه‌ها، میزان افزایش عمودی و نسبت بین طول جریان به پهنای مجارا از طبقه‌بندی کردند. شکل ۱۲ موقعیت رودخانه مهاباد را در تمام این میزانها نشان داده است. این رودخانه در این طرح با تمام شش نوع نوع رودخانه آدا اختلاف دارد. میزان توان جریان، اندازه بار بستری و اندازه ذرات کرانه‌ها و میزان افزایش عمودی، در محدوده نوره ۵۰ قرار می‌گردد. اما میزان جابجایی و نسبت طول جزایر به پهنای مجارا در محدوده نوره ۵ قرار می‌گردد.

نتایج تطیفی رودخانه مهاباد با طرح ناسون و ناتیبون نشان می‌دهد که این رودخانه نتوانسته با این طرح مطالبت نماید. کلمه‌ی (۱۹۸۳:۱۲۵۱) نیز با بررسی رودخانه پوکا به نتیجه مشابه رسید و با عدم تطابق رودخانه پوکا با این طرح بهبودی در شاخه توان جریان را به یزدی رودخانه نسبت داد. به نظر مرسد که در رودخانه مهاباد عامل اصلی عدم مطالبت ناشی از نحوه شکل گیری غیرطبیعی این مجارا باشد. سد انحرافی با برگشت آب و رسوبات منع از توسه و گسترش طولی جزایر شده است و رسوبات بیشتر در حاشیه جزایر رسوب‌کننده همین دلیل از یکسوب سبب افزایش پهنا و جابجایی بستر شده و از سوی دیگر با کاهش یافتن طول جزایر در معادله نسبت طول جزایر به پهنای شاخه، اندازه بستر پایینی را نشان می‌دهد.

![شکل ۱۲](https://jgs.khu.ac.ir) طبقه‌بندی ناتیبون و ناتیتون (۱۹۶۳) برای رودخانه‌هایآدا و موقعیت رودخانه مهاباد در این طبقه‌بندی
نتیجه‌گیری

شکل مجراه رودخانه مهاباد در پایینتر از شهر مهاباد از گیسویی به سیستم تغییر پیدا می‌کند بر اساس بررسی‌های صورت گرفته چنین نتیجه‌گیری شده است:

- توان جریان در محدوده گیسویی ناشی از عامل شیب می‌باشد و در محدوده سیستم‌های پایین-دست جریان (دشت) برعکس شیب کاهش می‌یابد و توان جریان ناشی از افزایش دیب به علت دریافت شاخه‌های بیشتر است.

از سوی دیگر انداره ذرات بستر و استحکام کرانه‌ها تغییر معمولی و آشکاری می‌باشد و انداره آن در محدوده سیستم‌های زیرتر و چسبندتر می‌گردد. اثرات این تغییر در کرانه‌ها در ویژگی‌ستر دارای نقش مهمی است زیرا اواسحا پایدارتر می‌شوند و انتقال و جابجایی آنها توسط آب به خاطر چسبندگی مواد سیز، مشکل می‌گردد. بافت نسبی کرانه‌ها همچنین استحکام کرانه‌ها را افزایش می‌دهد و توان زیادتری برای گیسوی شدن، لازم است. ارتباط با بیان بستر و شکل رودخانه نشان‌دهنده است که تغییر بار بستری عامل بالقوه‌ای برای تغییر شکل مجارا است.

- تفاوت آشکاری بین شیب دره با شیب مجا در محدوده سیستم‌های دیده می‌شود. در محدوده گیسویی این تفاوت وجود ندارد. تغییر شیب می‌تواند سبب تغییر الگو و شکل مجارا از گیسویی به مناتردی گردد.

بر اساس مطالعه فوق یک نتیجه حاصل شد که شکل اولیه تغییر از مجاری گیسویی به سیستم‌های حاصل ارتباط بین افزایش دیب، کاهش اندازه ذرات رسوبی و وجود درصد رس زیاد در کرانه‌ها است افزایش توان جریان و نبود ذرات درشت از کیفی‌تر و از طرف دیگر چسبندگی کرانه‌ها سبب شده رودخانه در واکنش به این متغیرها شیب خود را از طریق افزایش طول مجارا که به سیستم‌هایشان ان همراه است، کاهش دهد. به نظر می‌رسد رودخانه‌ها از طریق تغییر شکل و هندسه مجارا به افزایش و درفت شاخه‌های متعدد و تغییر ترکب کرانه‌ها و کاشش اندازه ذرات واکنشی نشان داده و به تغییر رسانیده است.

احداث سد بر روی این رودخانه سبب کاهش دیب اوج شده است که نتیجه آن به‌طور کلی رسد. در اینجا ریز در داخل سد است. مقابله عکس‌های سال‌های مختلف بین‌دهنده-گیری این جغرافیا براثر نشته شدن رسوبات و فرسایش جانی مجارا است به این صورت که نخست رسوبات در داخل مجارا تهیه شده، سپس بر روی رسوبات پوشش گیاهی رشد کرده و آنها از بین رفته‌شده‌اند به‌جریان افتراقی از اینجا منتقل می‌شود. استفاده مناسبی از دریاچه‌های این مجارا به‌طور مکانیکی رشد و گسترش جانی سبب شده است از قسمت مرکزی مجارا، شاخه‌ها فاصله‌گیرند.
تحقیق احکامی مجرای رودخانه مهاباد و تأثیر احکام سد بر آن

بر اساس یافته‌های فوق به نظر می‌رسد که هیدرولیک جریان کنترل‌شده به‌وسیله سد مهاباد و پهنای ایجاد شده به‌وسیله سیلاب‌های گذشته عامل تغییر شکل از گیسویی به آدی است و سد احکم‌ای با شکست آب و کاهش سرعت جریان و تجمع رسوبات در محدوده خاصی این روند را توسیع داده است.

بر اساس تجویز و تحقیق‌های صورت گرفته در این تحقیق کاهش اندوزه نیروی در محدوده مجزای سینوسی از گزاره به رسم این امکان را قرارده اند تا تغییر کرانه‌ها کمتر و پهنا است. بستر در مقایسه با افزایش دریایی نداشته باشد که این به‌عنوان خود سبب شده دیگر محدوده‌ها یکی از بستر خارج و رسوباتی که همراه آن‌ها بوده‌اند سبب یک ترک و بر روی کرانه‌ها تنها شدن می‌گردد. درک هما نیروی شکل آن، در رودخانه بسیار محدود باشند و بنابری یک جزییه که حاصل برگشت آب به‌وسیله تنگ‌شده‌گی بستر می‌باشد، شکل گیرد.

منابع و مأخذ

۱. تالوری، عبادالرسول. (۱۳۷۴). عوامل مختلف فرسایش رودخانه‌ای و بررسی اجمالی چگونگی تأثیر آن‌ها. انجمن هیدرولیک ایران. کارگاه آموزشی تخصصی کنترل فرسایش در رودخانه‌ها.
۲. دفتر پره‌بی‌ای ده سد و شبه‌آباد. (۱۳۷۶). رسوب‌شناسی و رسوب‌شناسی خزی سد مهاباد. گزارش مرکز تحقیقات منابع آب (نماب).
۳. رضایی‌قلی، محمدحسین؛ محمد نژاد، محمد و صادقی سراشتر. (۱۳۹۱). بررسی تغییرات شکل هندسی رودخانه قزل‌اوزن با تأکید بر عوامل زمین‌شناسی و زمین-شناسی. مجله جغرافیا و برنامه‌ریزی محیطی. شماره ۳. سال ۳۳. پایه ۴۶.
۴. سازمان زمین‌شناسی کشور، نقشه‌زنی‌شناسی مهاباد. تهیه‌شده به‌وسیله افتخار نژاد. مقياس 1:۱۰۰۰۰۰۰۰: 1.
۵. طالب‌پور اصل، داوود. (۱۳۸۴). مطالعه عمل کاهش عمر مفید سد مهاباد و شناسایی نواحی مستعد تولید رسوب در بالادست آن. پایان‌نامه کارشناسی ارشد. دانشکده ادبیات و علوم انسانی، دانشگاه رازی کرمانشاه.
ترشیح تحقیقات کاربردی علوم جغرافیایی سال پنجم، شماره ۳۷، تایبند ۹۴

۶. علیزاده، امین. (۱۳۸۱). اصول هیدرولوژی کاربردی. انتشارات آستان قدس رضوی، چاب یزد.

۷. نیکی، هادی. (۱۳۸۹). تحلیل دینامیک و شکل مجارا در حوضه آبریز رودخانه مهاباد

۸. یاسی، مهدی. (۱۳۸۷). جزوه هیدرولیک، مقطع کارشناسی، رشت کشاورزی - آب، دانشگاه ارومیه. ۱۵۲ صفحه.

Elektroprojekt Consulting Engineers -ZAGREB-Yugoslavia ..(1964), Ministry of water and power Azarbaijan: water and Power Authority final Hydrogeological report of Mahab, Plain and Shahpur dam.,Vol 1 and 2.

تحمیمبت کبرثزدی
،
ؽوبرُ 73، تبثغتبى 49
631